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POLARIZATION OF GALVANIC POINT ANODES FOR CORROSION 

PREVENTION IN REINFORCED CONCRETE 

 

Margareth Dugarte 

 

ABSTRACT 
 
 The polarization performance of two types of commercial galvanic point 

anodes for protection of reinforced steel around patch repairs was investigated. 

Experiments included measurement of the polarization history of the anode 

under constant current impressed by galvanostatic circuits and in reinforced 

concrete slabs. The tests revealed, for both types of anodes, a potential-current 

function (PF) indicating relatively little anodic polarization from an open circuit 

potential at low current levels, followed by an abrupt increase in potential as the 

current approached an apparent terminal value. Aging of the anodes was 

manifested by a continually decreasing current output in the concrete tests, and 

by increasingly more positive potentials in the galvanostatic tests.  Those 

changes reflected an evolution of the PF generally toward more positive open 

circuit potentials and, more importantly, to the onset of elevated polarized 

potentials at increasingly lower current levels. There was considerable variability 

among the performance of replicate units of a given anode type. Modest to poor 

steel polarization levels were achieved in the test yard slabs. Modeling of a 

generic patch configuration was implemented with a one-dimensional 

approximation.  The model calculated the throwing distance that could be 

achieved by a given number of anodes per unit perimeter of the patch, concrete 

thickness, concrete resistivity, amount of steel and amount of polarization 
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needed for cathodic prevention. The model projections and aging information 

suggest that anode performance in likely application scenarios may seriously 

degrade after only a few years of operation, even if a relatively optimistic 100 mV 

corrosion prevention criterion were assumed. Less conservative criteria have 

been proposed in the literature but are yet to be substantiated. Other 

investigations suggest a significantly more conservative corrosion prevention 

may apply instead. The latter case would question the ability of the point anodes 

to provide adequate corrosion prevention. 
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1. INTRODUCTION 
 
1.1 Background  

 

Corrosion of reinforcing steel in concrete is of major concern due to the 

associated cost and possible structural degradation. It has been estimated to 

cost billions of dollars per year to restore or replace damaged structures, and 

corrosion can result in failure of structural elements. The direct cost of corrosion 

in infrastructure is about $22.6 billion per year according to recent studies by the 

Federal Highway Administration. Indirect societal costs can be considerably 

higher [FHWA 2002].    

 

There are approximately 600,000 highway bridges in the U.S and more 

than 15% of them are affected by corrosion damage [FHWA 2002]. These 

statistics underscore the impact of corrosion on the economy of developed 

nations. The associated safety and financial liability issues warrant the need for 

development of techniques and procedures to effectively control corrosion. The 

corrosion control of reinforcing steel in concrete is then a significance 

maintenance practice that government agencies and industry have address to 

reduce adverse impact. 

 

Chloride-induced corrosion of steel in concrete is one of the major causes 

of bridge deck and marine substructure deterioration. The presence of chlorides 

results from exposure to sea water in coastal locations and application of de-icing 

salts on roadways in northern states. When chlorides reach the steel surface 

active corrosion ensures forming expansive corrosion products that crack the 

concrete cover. The concrete delamination, cracking and spalling if left  
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unmitigated can require costly maintenance of even eventually cause structural 

failure. Repairs often consist of removing the cracked concrete and replacing it 

with chloride-free concrete.  It takes only a small amount of corrosion metal loss 

(e.g. ~0.1 mm (0.004 in)) at the reinforcing steel bar (rebar) surface to create 

corrosion products sufficient to generate internal stresses that crack the concrete 

[Torres-Acosta 2004]. Thus, repairs often do not involve rebar replacement, as 

the remaining steel cross section is still adequate.  However, patch repairs 

limited to the portions of the structure that showed conspicuous cracking may 

have detrimental consequences. As is often the case, zones adjacent to the 

patch have already had substantial chloride contamination. As will be discussed 

in the following, corrosion can rapidly develop there promoted by the newly 

placed patch, and small ("point") anodes at the periphery of the new patch are 

often recommended as a means to alleviate that problem. This investigation 

focuses in evaluating the performance of those anodes in concrete repair 

applications.  

 

1.2 Literature Review 

 

1.2.1 Corrosion of Steel in Concrete 

 

Steel in concrete is normally in the passive condition (protected against 

corrosion by a nanoscale-thick oxide film) formed due to the highly alkaline 

nature of the pore water (pH 12.5 to 13). However, the film is disrupted by events 

such as a decrease in the pH of the pore water due to carbonation, or intrusion of 

chloride ions from the external environment.  The latter modality tends to result in 

earlier distress in bridge applications and will be considered here. Corrosion 

starts when the chloride concentration at the rebar surface exceeds a critical 

value known as the chloride corrosion threshold (CT).  Much of the information 

available on the value of CT concerns atmospherically exposed concrete. In that 

case the potential E between an isolated plain rebar steel segment and the 

immediately surrounding concrete tends to be, when passive, in the range -100 



www.manaraa.com

3 
 

to -200 mV in the Copper/Copper Sulfate Electrode (CSE). In those conditions CT 

is typically >~0.4% of the mass of cement per unit value in the concrete [Li 2001]. 

The value of CT depends on many variables such as the rebar material [Hurley 

2006], the pH of the concrete pore water [Li 2001, Gouda 1970, Hausmann 1967] 

and the presence or voids [Glass 2007]. Of importance to the present work, CT 

has been found to depend also on the value of E for the passive steel in a 

manner that reflects the well known dependence between pitting potential and 

chloride content in other systems [Szklarska-Smialowska 1986].  The evidence 

available to date for steel in concrete is limited, but it suggests that if all other 

factors remain the same, CT tends to increase manifold when E decreases from 

~-150 to ~-600mV CSE. There is uncertainty as to the precise amount o 

polarization needed for a given effect [Presuel-Moreno 2005A, Alonso 2000, 

2002; Izquierdo 2004, Pedeferri 1996].  

 

There are four components present for corrosion of steel reinforcement in 

concrete to occur: the concrete pore water or electrolyte, oxidation of iron          

(Fe  Fe++ + 2e-), oxygen reduction in presence of water (O2 + 2H2O +4e-  4 

OH-), and an electronic path between anodic and cathodic regions in the steel 

rebar assembly. The value of E for an isolated rebar segment is determined by 

the interplay between cathodic electron-consuming reactions (principally the 

reduction of dissolved oxygen in the pore water indicated above) and anodic 

electron-producing reactions (such as the dissolution of iron from the rebar 

indicated above). In the passive condition the rate of iron dissolution, or passive 

corrosion rate, is very small [Sagüés 2003] and the resulting mixed potential 

[Fontana 1986] for the system is in the relatively less negative value range given 

earlier. After CT is exceeded, the rate of the anodic reaction increases 

dramatically.  The resulting mixed potential of steel that is corroding actively in 

atmospherically exposed chloride-contaminated concrete drops, typically to 

values EACT in the ~-300 mV to -600 mV SCE range [Bentur 1997, Broomfield 

1997, Li 2001].  
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1.2.2 Cathodic Protection and Cathodic Prevention 

 

These modes of corrosion control and their differences and associated 

terminology are reviewed here as they pertain to the scope of this investigation.  

 

Cathodic protection in concrete is a method for decreasing the corrosion 

rate of steel that is already in the actively corroding stage.  The decrease is 

achieved by lowering the steel potential to a value below that which existed in the 

freely corroding condition.  The rate of corrosion is that of the net anodic reaction, 

which decreases strongly as the potential becomes more negative following 

usual electrochemical kinetic laws [Fontana 1986]. Assuming on first 

approximation Tafel kinetics and neglecting the effect of the metal deposition 

reaction, a decrease in potential by an amount equal to one Tafel slope (typically 

in the order of 0.1V [Jones 1996] would lower the corrosion rate by about 90%.  It 

is then not surprising that practical criteria for achieving cathodic protection, 

based on operating experience, specify a polarization level of 100 mV below the 

freely corroding potential as a criterion for effective application of cathodic 

protection [Funahashi 1991]. In addition to direct action on anodic kinetics, the 

electric field driving the cathodic polarization current tends over time to 

respectively decrease and increase the concentrations of chloride and hydroxide 

ions at the rebar surface.  Depending on the electric field strength [Glass 1997], 

those changes may actually restore passivity on the rebar surface.   

 

Cathodic prevention is based on the entirely different concept from that of 

cathodic protection. In cathodic prevention the potential of the passive steel is 

shifted from its natural value in the negative direction before the onset of active 

corrosion, to substantially delay or prevent the initiation of such corrosion when 

the passive film is still in place. The change to a more negative potential has the 

effect, noted above, of increasing the value of CT so that the steel can withstand 

significantly greater chloride content in the surrounding concrete before 

sustained passivity breakdown takes place. In other words, this preventive 
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cathodic polarization extends (sometimes indefinitely) the time period before any 

corrosion starts. The mechanism responsible for this effect is not precisely 

known, but it may involve phenomena observed in other systems such as 

improved resistance of the passive film to chloride ions [Macdonald 1992], or 

destabilization of incipient pits [Frankel 1998] as the polarization becomes less 

anodic. Such processes involve conditions quite different from those present on 

fully active rebar, so criteria such as the 100 mV shift for cathodic protection 

[Funahashi 1991] do not necessarily apply to cathodic prevention cases. As 

indicated earlier, there is uncertainty as to the value of the potential at which the 

passive rebar needs to be held to achieve a given increase in CT, an issue that 

will be addressed later in this document. There is agreement however that the 

current density needed to cathodically shift the potential by a given amount from 

the freely corroding condition is significantly less for passive than for active rebar 

[Glass 1997, Pedeferri 1996]. Thus, if the required potential shifts were 

comparable, cathodic prevention would be comparatively easier to implement 

than cathodic protection. For example, the lesser driving potential of a galvanic 

system may suffice in a cathodic prevention application, while an impressed 

current system may be needed for cathodic protection.  

 

The polarization needed for cathodic protection or prevention may be 

achieved either with impressed current or galvanic systems [Broomfield 1997]. 

Typical reported (independent confirmation may be needed) steel protection 

current densities range between 2 to 20 mA/m2 for cathodic protection and a little 

as 0.2 to 2 mA/m2 for cathodic prevention [[Glass 1995].  In either case an anode 

or system of anodes in contact with the concrete is the physical source of the 

polarizing current, which travels through the concrete to the rebar assembly.  

Given a certain polarization criterion value, the effectiveness of both cathodic 

protection and prevention depends also on how far away from the anode the 

polarization criterion is satisfied. That reach is called the throwing distance. The 

throwing distance and its decrease with age are important descriptors of the 

capability of a protection or prevention system.  
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1.2.3 Corrosion Macrocells and Effect of Patch Repairs 

 

If a rebar segment is not isolated but is instead part of a larger rebar 

assembly, then because of electrochemical coupling the local value of E at the 

rebar segment is elevated or decreased if the potential in the surrounding zones 

is higher or lower respectively than that of the segment if it were isolated.  This 

macrocell coupling effect is stronger if the electrical conductivity of the concrete 

is high (low resistivity) [Sagüés 1990, 2003, Broomfield 1997, Kranc 1994, Kranc 

2001, Raupach 1996].  

 

An important consequence of macrocell coupling is that any passive steel 

surrounding an actively corroding rebar zone may develop E values significantly 

more negative than if the rebar assembly were discontinuous. As a result, the 

corroding zone where corrosion had started at an earlier date, is effectively 

acting as a galvanic anode providing a degree of cathodic prevention to the 

surrounding passive steel. Thus, CT in that surrounding steel is increased and 

active corrosion would not take place there for some time, even if chloride 

contamination at the rebar depth were already substantial.  Such situation takes 

place in reinforced concrete structures, such as for example a bridge deck in 

deicing salt service, where chloride contamination was more or less widely 

distributed and increased with service time. Eventually active corrosion starts at a 

location where chloride buildup was fastest. The steel surrounding that zone, 

while still in the passive condition, may be nevertheless in contact with concrete 

with high chloride content.  Corrosion there could have started soon afterwards 

without the prevention effect mentioned. Models providing visualizations of this 

effect have been presented elsewhere [Sagüés 1998, 2009A, 2009B]. 

 

The zone experiencing corrosion may be patch-repaired by removing the 

chloride contaminated concrete there and replacing it with fresh, chloride-free 

concrete. As a result the previously active steel in the patch becomes passive 

and corrosion stops there. However, that transition to the passive condition also 
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elevates the potential of the steel in the patch from its former highly negative 

value to one that can be several hundred mV more positive.  Consequently, the 

cathodic prevention effect on the surrounding zone is lost. The newly lowered 

value of CT in the surrounding zone then may be less than the existing local 

chloride concentration, and active corrosion could promptly start. This detrimental 

consequence is called a ring or halo damage around the patch [Broomfield 

1997].  In those cases, prevention may be restored by inserting a sacrificial 

galvanic anode (e.g. made of zinc, which develops a highly negative potential) in 

the patch-repair zone. That anode takes up the function of the previously 

corroding rebar and prevents corrosion from starting both in the patch area and 

its surroundings. 

 

1.2.4 Anodes for Controlling Corrosion Around Patch Repairs 

 

Small galvanic anodes (“point anodes”) are available commercially for 

casting in patch repairs, for the  intended purpose of forestalling the halo damage 

effect [Bennett 2002, Sergi 2001,Whitmore 2003,Bennett 2006].  The anodes 

usually consist of a zinc alloy piece with steel connecting wires, and embedded in 

a mortar disk.  Electronic connection to the rebar is necessary for these anodes 

to work, and it is made by tying the wires to the rebar in the patch.  The mortar 

around the zinc alloy is formulated to obtain high pore water pH, increase water 

retention, or otherwise promote a regime where the formation of a passive film on 

the alloy is hindered and the alloy stays in an active condition. The mortar may 

also be engineered to mitigate the effect of expansive anode corrosion products.  

The alloy composition itself may also be adjusted to promote activity.  In such 

condition the isolated (open circuit) value of E for Zn alloys is highly negative 

(e.g. ~-1,000 mV CSE). Macrocell coupling with the rebar in both the patch and 

the surrounding zone then could allow for appreciable lowering of E and 

restoration of a cathodic prevention regime to a condition comparable to or 

greater than that existing before the repair. Proprietary patch concrete mixtures 
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are also marketed to increase the conductivity around the anode and maximize 

macrocell coupling with the ring zone.  

 

Point anodes as described above were the subject of developmental work 

and commercial production in Europe during the previous decade [Sergi 2001] 

followed by introduction in North America by two different companies. Typical 

production units are illustrated in Figure 1. Much of the marketing of those units 

has been aimed at residential or parking building applications, but recently there 

is increasing consideration for highway applications.  Of special interest is the 

mitigation of corrosion around repaired bridge deck spalls patches in inland as 

well as marine substructure components.  

 

1.2.5 Open Issues to be Addressed 
 

The possibility of large scale applications in highway systems brings up 

several important performance and durability issues needing resolution.  Among 

those, at the beginning of this investigation there was little documented 

information on the quantitative relationship between the operating potential of 

point anodes and the amount of current delivered as function of that potential - 

the polarization function (PF) of the anode.  

 

There was also a need to know how the ability of the anode to provide 

protective current would be degraded with service time and the total amount of 

protective charge that could be delivered.  It was also unknown over how long of 

a distance away from the repair patch the corrosion prevention effect may be 

obtained for a given potential-current anode function, anode age, and especially 

anode placement density so that a means of assessing the number of anodes 

needed (and hence cost) for a given desired effect could be assessed by the 

potential user.  
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1.3 Objectives 

 

The main objective of this study is therefore to evaluate galvanic point 

anodes to determine their performance and applicability for concrete repairs. 

Based on the needs indicated in the previous section, the present investigation 

focused on durability and effectiveness as the two key factors deserving 

attention. 

 

1.3.1 Regarding Durability 

 

a. Determine for selected commercially available point anodes the operating 

potential/current delivery function, and its dependence on relevant service 

variables and on service time. 

 

b. Establish anode cumulative capacity (total usable charge delivered) and 

associated ultimate service life capability. 

 

1.3.2 Regarding Effectiveness 

 

a. Assess the anode ability to achieve cathodic prevention over a usable 

distance (throwing distance) under realistic service conditions and as a 

function of the number of anodes needed, so as to establish the means of 

conducting cost/benefits analyses by potential users. 
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2. INVESTIGATION METHODOLOGY 
 
2.1 Approach 

 

 To achieve the investigation objectives the following two tasks were 

performed: laboratory experiments addressing durability issues, and modeling 

addressing effectiveness. 

 

2.1.1 Laboratory Experiments 

 

The polarization behavior of the anodes was examined by two types of 

tests in concrete. In one experiment the anodes were under constant current 

impressed by galvanostatic circuits, while in the other the anodes operated in 

natural macrocell conditions coupled to reinforcing steel in outdoor exposure test 

slabs. 

 

2.1.2 Modeling 

 

Modeling of a generic patch configuration was implemented to project the 

performance of point anodes for patch repairs applications as function of service 

time.  The model computations are intended to evaluate the extent of steel 

polarization that could be achieved by these anodes in situations representative 

of highway applications. The findings will serve to fill gaps in design criteria for 

galvanic point anode systems, and enable rational selection and application of 

corrosion prevention methods that best use limited public fiscal resources. 
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2.2 Products Selected for Evaluation 

 

In this investigation two types of point anodes in regular commercial 

production, each from a different manufacturer, were evaluated. These products 

are designated by the code names C and W.  The manufacturers provided the 

anodes used for the laboratory tests directly to the University of South Florida, 

identifying those anodes as regular production units. Two sets of anodes from 

each manufacturer were evaluated. The first set (1st) was provided in 2004 and 

the second set (2nd) in 2007. The anode model name for each manufacturer was 

the same for both sets. 

 

            For C anodes the mortar pellet surrounding the anode proper was circular 

(Figure 1) and had an external diameter ~63 mm and thickness ~27 mm. The 

mortar mass was ~100 g.  The zinc alloy anode proper met ASTM B 418-95a 

Type I requirements according to the manufacturer. The pellet was of highly 

alkaline mortar, reported by the manufacturer to have pH=14 or greater. The 

product Material Safety Data Sheet for this product model name identifies 

cement (no type specified) and lithium hydroxide as major constituents.  

Destructive examination of a unit of the 1st set revealed an internal solid zinc 

alloy disk (Figure 2) 44 mm in diameter and 12 mm thick. The zinc alloy mass 

(after subtracting that estimated for internal steel wires) was 103 g. The steel 

wires for external connection (~1.5 mm diameter) were embedded in the zinc 

alloy medallion and extending outwards.  Examination of a unit of the 2nd set 

revealed a ribbed zinc alloy disk (Figure 2) 43 mm in diameter, 19 mm maximum 

thickness and 115 g alloy mass, with external connection wires as those in the 

1st set. 

 

 For W anodes the mortar pellet surrounding the anode proper was roughly 

rectangular (Figure 1), 77 by 60 mm on the sides and 33 mm thick. The mortar 

mass was ~ 170 g.  The zinc alloy met ASTM B418-01 requirements according to 

the manufacturer. The pellet was of mortar reported by the manufacturer to 
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contain humectants and proprietary zinc activators. The product Material Safety 

Data Sheet for this product model name identifies Portland cement and lithium 

bromide among major constituents, and calcium salt (a synonym for calcium 

hypochlorite but no clarification given), calcium nitrate and lithium nitrate among 

minor constituents.  Destructive examination of one unit from the 1st set revealed 

an internal zinc alloy element consisting of four piled rectangular expanded metal 

mesh squares, 34 mm on the side, with a combined height of 18 mm.  A plastic 

sponge separated the squares into two pairs (Figure 3). The total zinc alloy mass 

was 48 g.  Two steel wires (~1.5 mm diameter) for external connection were 

wrapped tightly against the expanded metal squares.  Examination of three units 

from the 2nd set (Figure 3) revealed in all cases an internal zinc alloy element 

consisting of three piled rectangular expanded mesh squares, 34 mm on the 

side, with a combined height of 14 mm. There was no plastic sponge separating 

the squares. The total zinc alloy mass averaged over the 3 units was 40 g. Two 

steel wires (~1.5 mm diameter) for external connection were wrapped tightly 

against the expanded metal squares.  

 

 
 

Figure 1 - External appearance of anode types (C on top, W on bottom). 
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Figure 2 - Type C anode specimens. Zinc alloy anode appearance after 

embedded mortar was stripped; otherwise as-received. Left, 1st set; Right, 2nd 

set.   
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Figure 3 - Type W anode specimens. Zinc alloy anode appearance after 

embedded mortar was stripped. Top 1st set.  Bottom 2nd set. (Mortar only 

partially stripped).  
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2.3 General Aspects of the Anode Evaluation Approach 

 

The investigation aims in large part to characterize anode performance by 

determining the potential/current delivery function (PF) of the anode, and its 

dependence on relevant service variables (e.g. moisture content and alkaline 

content of surrounding concrete) and on service time. Implicit in this approach is 

determining the ability of the anode metal to remain in the active condition over 

long periods of time, as well as the cumulative capacity of the anode (total usable 

charge delivered) and associated ultimate service life capability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Idealized potential-current diagram of the evaluation approach.  

 

 Figure 4 shows the concepts involved and their application [Sagüés 2005].   

Consider an anode being evaluated when initially placed in service. The anode is 

expected to develop under open circuit (OC) condition, a potential in the order of 

-1V CSE.  If connected with a passive rebar assembly, the anode delivers some 

current and polarization causes the anode potential (as measured against a 
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reference electrode placed in close proximity to the anode) to become less 

negative than in the OC condition. The polarization increases with larger current 

demand, as described by Curve 0 which is effectively the PF of the anode at the 

beginning of its service life. Curve 0 would also result from joining the locus of 

separate points corresponding to a number of similar newly placed anodes acting 

independently at different current demands.  If current delivery of each anode 

were kept constant for a long time, the anode performance is expected to 

degrade somewhat from causes such as zinc consumption (with consequent 

decrease in effective surface area) and accumulation of corrosion products that 

may impede the passage of ionic current or even promote passivation of the 

anode surface causing eventually failure to deliver protection. The manifestation 

of such degradation would be a shift to more positive values in the anode 

potential, likely to a greater extent at longer services times and higher currents, 

as illustrated by PF Curves 1 (time = t1) and 2 (time = t2 > t1).  Those curves can 

be obtained experimentally by operating the anodes while connected to an 

external galvanostatic control circuit.  Both the ability of the anode to remain 

active and the cumulative capacity of the anode can then be characterized from 

the curves at each current regime and at different time intervals.  

 

 A diagram thus obtained (family of PF curves as function of time) for a 

given anode type and environment, including mortar type and humidity condition, 

can serve as a standardized descriptor of the anode performance for those 

conditions.  If a galvanic control circuit is used, this procedure eliminates the 

variability that appears when evaluating anodes, as it is often done [Sergi 2001], 

by coupling to a passive rebar assembly embedded in the same mortar or 

concrete. The variability in such cases stems from the current demand by the 

rebar assembly, which may sometimes be sustained at high levels for long 

periods of time, or drop rapidly early in the life of the test depending on the initial 

condition of the steel surface or small variations in the pore water composition or 

concrete moisture.  
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The curves in a PF diagram obtained from a sacrificial anode may be used 

to obtain a bounding indication of how much protective action may be expected 

from a rebar assembly for which there is information on its polarization 

characteristics. As an illustration, the polarization information can take the form of 

the long term potential-cathodic current density polarization curve Er=f(i) for the 

reinforcing steel, determined by prior measurements as illustrated in Figure 4. 

Thus if the anode placement density is such that each anode is to protect an 

area Ar of rebar surface area, the curve Er=f(I/Ar) describing the polarization 

characteristics of that area [Sagüés 2003]  can be superimposed directly on the 

PF diagram to determine how much rebar polarization may be achieved at 

different aging conditions (Figure 4). If the resistivity of the concrete path 

between anode and rebar is very small, the rebar receives a current ISA and is 

polarized down to potential ESA, which may then be compared with the minimum 

requirements for corrosion prevention in the specific application considered.  ESA 

is the best polarization level to be expected; if concrete resistivity is finite so an 

effective circuit resistance R applies, the current is less (ISB) and the rebar 

polarization is only down to ESB.   The amount of polarization is proportionally 

less if the area to be polarized is greater, as the effect is the same as moving the 

rebar polarization curve to the right.  This type of analysis, to project the extent of 

useful anode action based on the results of the test, can be extended to more 

complex system geometries by appropriate current distribution modeling 

[Presuel-Moreno 2005B, Sagüés 2003].  Those concepts have been applied in 

more detail in Chapter 5 of the present document, dealing with performance 

modeling of sacrificial anodes in a reinforced concrete structure.  

 

Some content in this dissertation has been published in reports to the 

sponsoring agency (Dugarte and Sagues, 2010), and has been in part 

reproduced here. 
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2.4 Anodes in Galvanostatic Regime in Concrete 

 

These sets of experiments were conducted using the above principles, 

where anode specimens were evaluated under various galvanostatic regimes in 

controlled humidity chambers. 

 

2.4.1 Materials and Preparation 

 

These tests involved the two anodes types to be evaluated (1st set only), 

in two different embedding media, two relative humidity (RH) regimes, four 

galvanostatic regimes, and were conducted in  triplicate for each condition for a 

total of 96  specimens. These specimens were exposed for approximately 4 

years. 

 

The basic test specimen arrangement (Figure 5) consisted of a prism 20 

cm x 20 cm x 10 cm) with a test anode placed near the center. An embedded 

activated titanium rod (ATR) reference electrode [Castro 1996] (periodically 

calibrated against a Copper Sulfate Electrode (CSE)) was placed against one of 

the external mortar faces of the anode. Alternatively, an externally placed CSE is 

used with appropriate compensation for electrolyte resistance if potential 

measurements are done with current on. An activated titanium mesh of the type 

used for impressed current cathodic protection of steel in concrete was cast 

underneath one of the main faces of the prism. The specimens were kept in 

controlled containers at the desired relative humidity. Connecting wires from 

anode and mesh led to a galvanostatic system capable of handling multiple 

independent channels.   
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Figure 5 - Anode test arrangement (sketch).  Anode was placed centrally in 

specimen. 

 

2.4.2 Test Conditions 

 

A summary of materials and test conditions is given in Table 1. A picture 

of the 95% RH chamber with test specimens is shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - The 95% RH test chamber. 
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Table 1 - Materials and test conditions for anodes in galvanostatic regime in 

concrete. 

 

Anodes evaluated C and W - 1st Set only. 

 

Embedding media 
• A Portland-cement with polymers commercial 

product marketed for patch repairsA. Mixed per 

manufacturer's instructions, using 2 liter water per 

50 lb bag of product plus 15 lb 3/8” Aggregate. 

 

• Ordinary Repair Concrete (ORC), 0.41 w/c, 658 lb 

per cubic yard. Type II cement, 3/8” Aggregate. 

Test environments 95% R.H. and  60% R.H. – target values;  

typically controlled to +-5% 

Galvanostatic regime 0, 30, 100 and 300 μA anodic current 

Replication Triplicate 

Total test blocks 96 

 

2.4.3 Data Measurement for Performance Evaluation 

 

 The potential EIO of the anodes is reported in the CSE scale in the instant-

Off condition (~ 1 sec after current interruption) either measured directly against 

a CSE electrode placed on the block side, or against the internal activated 

Titanium rod calibrated against a CSE.  Potential is reported as function of time t, 

with t=0 chosen to correspond to the moment of energizing of the anodes subject 

to galvanostatic control, which was 48 days after casting for the 95% R.H. tests 

and 81 days after casting for the 60% R.H tests.  

 

                                                 
A Provided by the manufacturer of the W anodes. 
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The instant-Off potential, EIO, values of triplicate specimens were 

averaged. If the power-on potential of any specimen reached ~0V (i.e., clearly 

incapable of any protective action) at a given test time, testing of that specimen 

was discontinued and the EIO average value from that time on was computed 

only for the remaining specimens of that trio. 

 

2.5 Anodes Coupled to Reinforcing Steel in Concrete 

 

These experiments determined the combined anode-rebar performance in 

outdoor exposure test yard slabs. These tests were intended to supplement the 

information provided by the galvanostatic experiments by examining an anode 

aging trajectory closer to that expected in actual applications, and to have an 

opportunity to reveal possible effects of diurnal and seasonal variations in 

temperature and humidity that would have not been experienced in the laboratory 

tests. In addition, the reinforced concrete tests would serve to provide information 

on steel polarization data, and to offer a means to validate modeling predictions 

such as those described in the next paragraph. The outdoor tests served also to 

compare the behavior of the first and second sets of anodes from each 

manufacturer.  For these tests and for the reasons indicated earlier, additional 

test strategies were needed to separate the information that pertains solely to the 

anode performance. One of those strategies was to insert resistors of various 

sizes between the anode and the rebar assembly in a test system and monitor 

the resulting potential/current trajectory of the anode, thus yielding an alternative 

way of obtaining a PF diagram for the sacrificial anode samples at various stages 

of aging. 
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2.5.1 Materials and Preparation 

 

Figure 7 shows the test slab configuration. The steel rebars were regular 

production No.7 (nominal diameter 7/8 in (22mm)) bars complying to ASTM A-

615 Grade 60, with dark gray mill scale on the surface.  Each rebar had a 

nominal 293 cm2 surface area, resulting in a 0.80 nominal ratio of steel area to 

concrete footprint area. The yard slabs were built using the same Ordinary 

Repair Concrete formulation as for the concrete blocks in the galvanostatic 

experiments, except that the shaded portion near the center contained admixed 

sodium chloride to obtain 5.9 Kg/m3 (10 pounds per cubic yard (pcy)) chloride 

ion.  Each slab contained two anodes of the each set provided by the 

manufacturers, placed as shown. Rebars were numbered from 1 to 12, starting 

from the left on Figure 7. Both anodes were of either Type C in triplicate slabs 

numbered 1, 3 and 5 or Type W in triplicate slabs numbered 2, 4 and 6.   

 

2.5.2 Test Conditions 
 

Six concrete slabs with embedded sacrificial point anodes as indicated in 

Figure 7 were cured in the molds for one week and then demolded and placed 

horizontally, elevated 1 ft above ground, in the outdoor test yard at USF.  The 

demolding date was designated as the start of the exposure period (t=0). While 

curing, the main anode was kept provisionally wired to the four rebars in the Cl- 

rich zone. Since placement in the yard and until connections boxes were in 

place, the entire rebar assembly and the main anode were kept interconnected 

with provisional wiring.  Due to casting difficulties the concrete in the chloride-rich 

zone was at places poorly consolidated and exhibited some honeycombing. After 

placement in the yard the affected slabs were fitted with partial forms and a 

cement-water grout was poured as needed to fill in the voids in the honeycombed 

spots.   
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Figure 7 - Yard slab test configuration showing 1st and 2nd set anode positions. 

Dimensions in inches. Rebars are numbered starting with No. 1 at left. 

 

The anode on the slab centerline (Main) was normally always connected 

to the rest of the rebar assembly. The other anode (Auxiliary) was disconnected 

except when indicated.  After 1045 days of operation of the 1st set of anodes an 

additional pair of externally wired duplicate anodes, from the 2nd set provided by 

the manufacturers, was placed in each slab as shown and keeping the same slab 

assignment for each type of anode. The 2nd set of anodes was placed by first 

drilling two partially overlapping 2-in (5 cm) diameter core holes in the space 

indicated, inserting the anode in the opening and filling it with a proprietary 

mortar compound for placing point anodes as a retrofit in hardened concrete, 

applied per manufacturer's instructions. The connection to the previous Main 

anode was then switched to the Main anode of the 2nd set; all other anodes 

remained normally disconnected.   
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2.5.3 Data Measurements  
 

Externally wired switches permitted performing instant-Off potential 

measurements and measurements of current delivery to individual rebars. All 

rebars and the main anode were normally interconnected. ATR electrodes were 

placed 12 mm away from the surface of each of the rebars. Figure 8 shows an 

installed slab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Installed yard slab with connection box. 

 

Measurements conducted typically on a weekly schedule included (a) 

anode and individual rebar currents; (b) potential of the anode-rebar assembly 

with anode energized (" Current-On" potential) with respect to a CSE placed on 

the concrete on top of each individual rebar as well as over the anode position, 

and also with respect to each of the embedded ATR electrodes; and (c) potential 

measured 1 second after disconnection ("Instant-Off potential) and immediate 

reconnection afterwards of each individual rebar as well as the anode, using both 

the CSE and the ATR electrodes. Air temperature (and internal concrete 

temperature after the 2nd set of anodes was installed) was measured each time 
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those tests were performed.  The following measurements and calibration tests 

procedures were conducted typically on a monthly or less frequent schedule. 

 

2.5.3.1 Concrete Resistivity 

 

A Nilsson Model 400 Soil resistivity meter (square wave alternating current 

(ac), 97 Hz). In this meter, current is applied with current terminals designated C1 

and C2, and potentials are measured between terminals P1 and P2. The meter 

was employed with a 4-point configuration that determined the concrete 

resistivity as function of distance along the main axis of the slab. All slab 

switches were temporarily placed in the open position.  The rebars at each end of 

the assembly (No. 1 and 12) were connected to the meter terminals C1 and C2 

respectively.  The potential connections were made consecutively to pairs of 

rebars starting with meter terminal P1 to rebar No.1 and terminal P2 to rebar 

No.2, then P1 to rebar No. 2 and P2 to rebar No.3 and so on.  The resulting 

resistance for each of the other measurements was multiplied by a cell factor 

(68.6 cm, equal to the cross sectional area of the slab divided by the center-to-

center rebar distance) to obtain the concrete resistivity for the concrete slice 

between each the pair of rebars. The raw measurement for the rebar pairs 1-2 

and 11-12 were divided by a correction factor of 1.2 to account for uneven 

current distribution at the injection current rebarsB.  The ac current path was 

uneven due to the presence of the main and auxiliary anodes between rebars 

No.4 and 5 for the 1st set of anodes, and in addition between rebars No. 3 and 4 

and 10 and 11 after the 2nd set of anodes was placed.  Thus, the resistivity of 

the chloride-free concrete is reported as the average of that obtained for rebar 

pairs 1-2 (corrected), 2-3, 3-4, 10-11 and 11-12 (corrected). After the introduction 

of the 2nd set of anodes, the values for pair 3-4 and 10-11 were not used for that 

                                                 
B The cell factor was obtained as the average, for all slabs and for all test times up to the 
introduction of the 2nd set of anodes, of the raw resistivity value for rebar pair 1-2 divided by that 
for pair 2-3, and similarly for pairs 11-12 and 10-11.   



www.manaraa.com

26 
 

resistivity calculation.  The resistivity for the concrete in the chloride-containing 

concrete region is reported as the average for rebar pairs 5-6, 7-8 and 8-9. 

 

2.5.3.2 Anode to Rebar Resistance 

 

These measurements were conducted at irregular intervals. The anode 

was temporarily disconnected from the rebar assembly to which it was normally 

connected. The soil resistivity meter was then used as a 2-point resistance 

measuring device, with one terminal connected to the anode and the other to the 

rebar assembly to which the anode was normally connected. 

 

2.5.3.3 Steel Depolarization 

 

This test started with an instant-Off potential determination, after which the 

anode was left disconnected and remained so while the potentials of the anode 

and individual rebars ("Off potential) were measured 1h, 4h and 24h following 

disconnection. The anode was reconnected afterwards. The result of the 

depolarization test was normally reported as the difference between the 4h Off 

potentials and the Instant-Off potentials at the beginning of the test. Results for 

the other intervals were archived and discussed when appropriate.  

 

2.5.3.4 Slow Anode Cyclic Polarization 

 

This test was conducted to obtain an approximation of the anode PF 

diagram at various aging periods. The tests were conducted as slowly as 

practical to approximate stabilization of the anode at each of the potential/current 

points determined. Moreover, the tests were conducted first changing conditions 

in one direction and then again in the return direction.  The extent to which any 

hysteresis effects appeared was an indication of how much the results obtained 

deviated from long term steady conditions. The test began after a regular set of 

Instant-Off measurements was conducted and is exemplified by the following 
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sequence. The connection between the anode and the rebar assembly was then 

opened and restored after introducing a 500 ohm resistor in the current path. 

After a typically 24 h wait period the current and Instant-Off potential of the anode 

was determined and the resistor was replaced by another about 2 times greater 

in value. The procedure was repeated in subsequent days. When a resistor value 

>=30 kohm was reached, the next daily step was in the open circuit condition so 

as to document the unpolarized potential of the anode. The subsequent daily 

steps were conducted with the same series of resistors but in reverse order, until 

reaching the direct connection condition. The test typically was completed over a 

period of 1-2 weeks. The Instant-Off potential vs current data with the forward 

and reverser data were reported as the PF curve of the anode at the aging 

condition corresponding to the beginning of the test.  

 

2.5.4 Corrections and Adjustments 

 

This section concerns corrections to measured variables in the yard slab 

inherent to the conditions of the experiment. The purpose of the present section 

was to explore and analyze important sources of uncertainly in the potential 

measurements of reinforcing steel in concrete and temperature compensation in 

order to make the appropriate corrections. It is noted that the temperature 

corrections were intended primarily to assist in smoothing the data available to 

reveal long term trends. First the temperature correction is analyzed, followed by 

a similar analysis of the potential correction. A third section deals with the 

resistivity corrections.  

 

2.5.4.1 Potential and Current -Temperature Corrections 

 

Potential measurements conducted with a CSE on aged concrete surfaces 

are subject to artifacts including junction potentials induced by the gradient in 

OH- concentration due to carbonation or leachout of pore water [Myrdal 1996]. To 
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correct for those effects small (typically 1 cm2) portions of the upper slab surface 

of each slab were periodically chipped off or abraded to expose a fresh concrete 

surface next to each of the positions used for regular measurements. Potential 

measurements taken with the CSE tip on the fresh surface were compared with 

measurements performed on an adjacent undisturbed surface. The difference 

was tallied as function of time and prorated accordingly to build a potential 

correction (averaged for all slabs) that was globally applied to the raw potential 

data. Cross-checks against the internal ATR electrodes (not subject to the 

surface effects) validated that approach.  All reported anode potential values in 

this document have been corrected accordingly.  

 

In addition to the systematic deviations noted above, potential 

measurements conducted on the concrete surface even in the absence of 

appreciable temperature variations (discussed below) were subject to scatter 

from e.g. surface moisture variations and degree of contact with the electrode 

sensing tip. Rebar potential measurements spanned a narrower range than that 

of anode potentials, so the obscuring effects of random scatter were 

considerable when attempting to construct a global steel polarization curve as 

shown in Section 3.2.2. In contrast, potential measurements of steel against the 

embedded ATR electrodes were found to be appreciably more stable. 

Consequently, the potentials reported in this document for constructing the steel 

polarization function were based on the measurements against the embedded 

ATR, corrected by calibration performed at selected times against an external 

CSE.  The calibration was conducted by carefully controlling surface conditions 

and performing repeated measurements to minimize random error in the average 

of those measurements. As the steel potential measurements were instant-Off 

values with only the current to a single rebar interrupted at a time, a 

compensation procedure was developed to account in the calibration for residual 

ohmic drop between the respective potential measuring points of the CSE and 

the corresponding ATR.  
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 Temperature of the test yard slabs spanned a wide range, from ~5 to ~35 
oC.  Measured values of galvanic currents, concrete resistivity and potentials 

showed appreciable day to day and seasonal fluctuations that correlated well 

with variations in temperature. Those fluctuations obscured long term trends due 

solely to anode aging and other system evolution, and added scatter to 

determinations of anode PFs. Consequently, the data were analyzed to extract 

parameters that could serve to approximately compensate for the temperature 

variation effects. Following prior approaches documented in the literature 

[Virmani 1983, Pour-Ghaz 2009] the anode current, I, was assumed to follow an 

apparent Arrhenius relationship 

 

  I(T1) = I(T2) exp [- HA R-1 (T1
-1-T2

-1)]   (1) 

 

Where T1 is the temperature for which all measurements are to be reported 

(chosen to be 298oK, 25oC which was the approximate average temperature of 

the yard slabs at the time of the day measurements were conducted ), T2 is the 

temperature at the moment the measurement was performed, HA is the apparent 

activation energy and R is the gas constant.  

 

 The value of HA was obtained from the best fit slope of a modified 

Arrhenius plot of the current-temperature data for each anode type of the 2nd set 

of anodes. The modification consisted of plotting the value (Δln I)/R as function of 

Δ T-1, where the differences are the change in measurement results for each slab 

of a given type of anode from the previous test date.  The slope of the straight 

line best fitting the combined results for that anode was reported as the average 

effective activation energy.  This approach emphasizes the changes due to 

temperature variations, which are relatively short-term, and minimizes error in 

estimating HA introduced otherwise by the longer-term changes due to system 

aging and not related to temperature. Values of HA=53 kJ/mole and 32 kJ/mole 

were thus obtained for the C and W anodes respectively.  Accurate concrete 

temperature records were kept only during the last half of the evaluation of the 
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1st set of anodes, when anode current values were generally small which tended 

to result in larger relative experimental scatter.  Trial calculations showed that the 

resulting uncertainty in HA determination was considerably greater than that for 

the 2nd set of anodes.  Consequently, it was decided instead to apply globally 

the HA values obtained for the 2nd set of anodes to the 1st set as well, 

recognizing that its correction is only roughly evaluated due to reduced 

confidence in both temperature and activation energy values.  

 

 The temperature compensation described above for the anode current is 

only a rough approximation that ignores the complex interaction of the combined 

electrochemical processes at the anode and the rebar assembly, plus the effect 

of variation of electrolyte resistance with temperature.  For example, the 

correction did not take into account the value of the potential at the time the 

current was measured.  This simplified approach was adopted as it was felt that 

the uncertainty inherent in the instant-Off anode potential (where a relatively 

large ohmic potential drop is eliminated but never exactly) did not merit further 

precision. 

 

A more sophisticated approach was used for temperature correction of the 

(mostly) cathodic current on the rebar, for which the instant-Off potential can be 

determined more accurately. Following a simplified absolute reaction rate kinetics 

approach (see for example Kaesche 2003 and observations by Tanaka (1964)), 

the cathodic rebar current density was corrected for temperature taking into 

account the potential E as well by: 

 

  I(T1, E) = I(T2,E) exp [ - (H'A+P E) R-1 (T1
-1-T2

-1)] (2) 

 

Where H'A is a nominal corrected activation energy term and P is a parameter 

that adjusts for the value of the steel potential when the current measurement 

was made.  The approach neglects also the complicating effect of any anodic 

reaction that took place on the rebar surface.  
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The values of H'A and P were obtained by a best fit procedure to be 

presented elsewhere [Dugarte 2010] that takes into account the cathodic current 

density, temperature and potential changes between measurements performed 

at consecutive test dates. The resulting average values of H'A and P were 40 

kJ/mole and 10.4 kCoul/mole respectively, with no significantly different results 

from steel in the slabs that contained C or W anodes. Because of the small value 

of the products PE compared with H'A, the final correction is not much different 

that what would have been obtained with a simpler relationship such as Eq.(1) 

with only the nominal activation energy term.  

 

2.5.4.2 Resistivity –Temperature Corrections 

 

A procedure similar to that used for the anodic current temperature 

correction was used to obtain the apparent activation energies for the concrete 

resistivity, with a resulting value of 24 kJ/mole for the concrete in the chloride-

free zone.  These apparent activation energy values and Eq.(1)  were then 

applied to the entire data set. All anode current and concrete resistivity results 

reported in the following are temperature-compensated by that procedure.   

 

It is noted that the temperature corrections were intended primarily for 

data smoothing to assist in revealing trends in other system variables.  Further 

analysis of this issue, including mechanistic interpretation of the apparent 

activation energies values obtained is left for future continuation work [Dugarte 

2010]. 
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3. RESULTS 
 
3.1 Results, Anodes in Galvanostatic Regime in Concrete 

 

For the following, it is recalled these experiments were performed only 

with the 1st set of anodes provided by the manufacturers.  

 

The average Instant-Off potentials EIO from individual anodes of a given 

replicate trio were again averaged over 200 day periods from  0-200 days to 800-

1200 days, and the results are illustrated in Figures 9 and 10  for the 95% and 

60% RH humidity conditions respectively. The 0 mV vs CSE condition was 

reached in the high RH chamber for only a few of the specimens, most in the 300 

μA regime  and then relatively late in the test. In contrast, in the low RH chamber 

the condition was reached relatively soon in more specimens and at lower 

current levels (10 and 30 μA), effectively terminating the test early for those 

cases.  

 

The initial open circuit potentials (OCP) of the anodes ranged from values 

approaching that commonly expected for active zinc (~-1V vs CSE) to sometimes 

markedly more positive values. In general both C and W anodes showed a more 

negative OCP in the proprietary mix medium than in the ordinary repair concrete, 

in both the high and low RH chambers. At 95% RH and for both embedding 

media the C anodes had more negative initial OCP than the W anodes. In 

contrast, at low RH the initial OCP of both anodes were comparable and not so 

negative (~ -500 mV). Scatter in the OCP values was significant, obscuring 

determination by these measurements of a possible variation of OCP with time 

such as the increasing trend suggested in the introduction.  
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The results for tests with galvanostatic current control typically showed 

clear increases in EIO with increasing current and time, culminating often in 

reaching the test-termination condition as noted above. At 95% RH the C anodes 

tended to polarize more, and faster with time, than the W anodes thus offsetting 

much of the difference in OCP between both types of anodes. At 60% RH both 

types of anodes (but more so the C anodes) tended to reach the test-termination 

condition faster than at 95% RH. By 1200 days of exposure at 60% RH a majority 

of the anodes of both types had reached the test termination condition at all three 

impressed current levels.  
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Figure 9 - EIO evolution for both test media and anode types exposed in the 95% 

RH chamber. Average results from multiple replicate anodes over each period (in 

days of exposure) indicated in the legend. 
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Figure 10 - EIO evolution for both test media and anode types exposed in the 

60% RH chamber. Average results from multiple replicate anodes over each 

period (in days of exposure) indicated in the legend. 
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3.2 Results, Anodes Coupled to Reinforcing Steel in Concrete 

  

For the following, it is recalled that these experiments were performed with 

anodes from both the 1st and the 2nd sets provided by the manufacturers. The 

manufacturer product designations were the same in each case.  The test 

schedule differed between both sets of anodes in that for the 1st set the 4 rebars 

in the chloride-contaminated region were connected from day 0 to day 477 and 

disconnected from thereon until day 1045 when testing of the 1st set ended. For 

the 2nd set tests, that started immediately afterwards, those rebars were never 

connected.  Unless otherwise indicated, time reported in the following 

corresponds to the period starting at the beginning of the placement of the 

respective set of anodes. This report covers the evolution of the 1st and 2nd set 

of anodes through their first 1045 and 590 days respectively.  

 

Results from both series of experiments in the yard slabs are presented as 

follows. 

 

3.2.1 Anode Polarization 

 

 The current delivered by the anodes to the entire rebar assembly as a 

function of exposure time is shown in Figure 11 for both sets tested. In both 

instances there were high initial currents (sometimes > 3 mA) that decayed 

generally steadily to values in the range of 200-500 μA after about 1.5 years for 

the C anodes of either set, and for the W anodes of the 2nd set. Notably, the 

performance of the 1st set of W anodes deteriorated much faster than the rest, to 

values about one order of magnitude lower than those of the C anodes (e.g. 20-

90 μA) at the end of the same period. For the 1st set of anodes of both types, 

there was a momentary lull in the long term decreasing trend after the active 

rebars were disconnected, but the trend was resumed afterwards.  It is noted that 

for much of the test period the current delivered by anode C-1 of the1st set was 

consistently significantly greater than that of its peers in the same set. 
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The evolution of Instant-Off potentials with time for both sets of anodes is 

shown in Figure 12. Initially potentials for all anodes in both sets were quite 

negative, ~-700 mV. For the 1st set the potential rapidly increased early on for 

both anodes, to reach a roughly steady regime at ~-400 mV CSE.  Disconnection 

of the active rebars at day 477 was followed by an increase of ~100 mV for the W 

anodes but little change for the C anodes. Of the latter, anode C-1, which had the 

highest currents as noted above had also the more negative potential, which 

began to drift toward even lower values (~ -600 mV) later in the exposure period.  

Both anode types in the 2nd set (with only passive rebars) showed a relatively 

slow increasing potential trend with time, reaching average potentials of ~-450 

mV and ~-600 CSE for W and C anodes respectively by the end of the test 

period.  
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Figure 11 - Anode current evolution with time for both sets of anodes.  Results of 

anodes in individual test yard slabs. 
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Figure 12 - Anode potential (Instant-Off) evolution with time for both sets of 

anodes.  Results of anodes in individual test yard slabs. 
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 The trends of potential evolution with time of the auxiliary anodes, which 

were normally in an open circuit condition, are shown in Figure 13. For the 1st 

set, with one exception (C-1), the auxiliary anode potentials of both types started 

at values ~100 to 200 mV lower than those of the energized anodes, but 

increased at a much slower rate, reaching on average a plateau at ~-600 mV 

after about 1.5 years. The auxiliary anode in Slab 1 (C-1) stayed however at 

more negative potentials over much of the test period.  The 2nd set of anodes 

showed also a slow increasing potential trend, but with starting values that were 

markedly more negative (~ -900 to -1200 mV) than those of the 1st set.  

 

 The current and potential evolution of the energized anodes is shown in 

Figures 14 and 15 as function of the cumulative amount of galvanic charge, Q, 

delivered by each anode up to the moment of each measurement. The value of 

Q was obtained by summation of the product of anode current-duration of all the 

previous test intervals up to the moment of measurement. The larger the value of 

Q, the larger is the amount of anode metal consumption due to the galvanic 

current, so Q serves as one descriptor for the extent of anode aging.  For the 1st 

set of anodes there was a striking decrease in current output of the W anodes Q 

reached ~10 k Coul to 20 k Coul. Two of the C anodes in the 1st set showed 

markedly decreased current delivery at Q ~10 k Coul to 20 k Coul, but anode C-1 

was delivering ~500 μA even at  Q ~ 60 k Coul.  

 

 Anodes in the 2nd set showed a more uniform decrease in current delivery 

with increasing Q, up to ~ 35 k Coul by the end of the test period. Unlike in the 

1st set, performance of the W anodes did not show early deterioration and was 

comparable up to the end of the test interval to that of the type C anodes in both 

sets.  Potential evolution trends as function of Q were obscured in the 1st set, 

especially for the C anodes. The 2nd set showed a clearer trend, with potentials 

of both types of anodes increasing somewhat uniformly as Q increased.  
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Figure 13 - Auxiliary anode potential evolution with time for both sets of anodes.  

Results of anodes in individual test yard slabs. 
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Figure 14 - Anode current as function of integrated anodic charge delivered for 

both sets of anodes. 
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Figure 15 - Anode Potential as function of integrated anodic charge delivered for 

both sets of anodes. 
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The potential-current trajectory of the anodes in the test yard slabs is 

shown in Figures 16-17. Each symbol correspond to the average Instant-Off 

potential and corresponding current reading for each anode, over a 100-day 

period starting with anode placement. The smallest symbol indicates the 0-100 

day interval with increasingly large symbols for the subsequent intervals. With the 

exception of data for anode C-1 near the end of the test period, the trajectories 

correspond roughly to lines with a negative slope, small for the 1st set of anodes 

and steep for the 2nd set. The general direction of the trajectories (C-1 for 1st set 

excepted) is indicated by arrows. 

 

Results from the slow cyclic polarization tests for the 1st set of anodes are 

illustrated in Figures 18 and 19.  For this set the tests were conducted only near 

the end of the exposure period, so the curves reflect significant performance 

derating due to aging.  The curves for the C anodes show little hysteresis, with 

the forward and return curves nearly overlapping, while the results for the W 

anodes tended to some hysteresis. The results show significant unit-to-unit 

variability, but the shape of the curves generally resembles that of the 

galvanostatic test results, with a relatively abrupt increase in anodic polarization 

once a given current level is reached. 

 

The slow cyclic polarization test results for the 2nd set of anodes are given 

in Figure 20 and 21. The 2nd set tests of both C and W anodes tended to have 

as a whole small hysteresis, comparable to that observed for the C anodes in the 

1st set tests. Therefore, for graphic simplicity only the average values of the 

forward and reverse parts of the test are presented. Tests were conducted at 

anode ages of 1, 4 and 13 months. The starting point of each curve generally 

matched the corresponding position in the potential-current trajectory (Figure 16 

and 17) for the respective anode type.  The results show increasing anodic 

polarization with anode age, with the C anodes having a more negative OCP (the 

zero current condition) than the W anodes, but with a more abrupt polarization 

increase with increasing anodic current. Unlike the case of the 1st set, the results 
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Figure 16 - Potential-Current trajectory for 1st set of anodes in test yard slabs. 

Largest symbols indicate greater age. See text for explanation of other symbols 

and on behavior of anode C-1. 
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Figure 17 - Potential-Current trajectory for 2nd set of anodes in test yard slabs. 

Largest symbols indicate greater age. See text for explanation of other symbols.
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Figure 18 - EIO-log I curves of the 1st set of C anodes in test yard slabs. 

Polarization curves in the forward (a) and return directions (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 - EIO-log I curves of the 1st set of W anodes in test yard slabs. 

Polarization curves in the forward (a) and return directions (b). 
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Figure 20 - EIO-log I slow cyclic polarization data for 2nd set of Type C anodes. 

Data for each of the corresponding test yard slabs (1,3,5), at approximate 

indicated anode age. Both forward and return data are displayed for each 

symbol. 
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Figure 21 - EIO-log I slow cyclic polarization data for 2nd set of Type W anodes. 

Data for each of the corresponding test yard slabs (2, 4, 6), at approximate 

indicated anode age. Both forward and return data are displayed for each 

symbol. 
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3.2.2 Rebar Polarization 

 

The amount of current delivered by the 1st set of anodes to the rebars at 

different positions in the slab at various times is shown in Figures 22 and 23,  for 

stages early and late respectively during the period when all bars were 

connected (before day 477). Cathodic (protective/preventive condition) current is 

assigned a positive sign. Currents values are the average of the three slabs of 

each type of anode. Both types of anode delivered about the same level of 

current at that time. All the passive rebars were subject to a net cathodic current, 

and it was greatest for the bars immediately next to the anode. In contrast, some 

of the active bars in the chloride contaminated zone had negative current 

indicating that they were acting as net anodes.  That effect persisted until the 

time in which the active bars were disconnected. After disconnection of the active 

bars (Figure 24) the current to the remaining bars, all-passive, was always 

cathodic. The bars closest to the anode received the highest current, which 

decayed for rebars further away.  A corresponding pattern was observed at the 

far end of the slab.  

 

 Four-hour depolarization test results of the rebars performed during the 

evaluation for the 1st set of anodes, while all rebars were connected, are shown 

in Figures 25-28. The depolarization level achieved was poor or nil on much of 

the rebar assembly both early on (Figure 25) and after 14 months (Figure 26). 

Depolarization levels improved somewhat for the C anode yard slabs when both 

the main and the auxiliary anode were temporarily connected together (Figure 

27), but only on the side of the slab containing the anodes and still yielding 

modest to poor results there. After disconnection of the active rebars (Figure 28, 

top) the extent of depolarization increased markedly for the C anode yard slabs, 

exceeding 100 mV on average for the slabs closest to the anodes.  By that time 

the performance of the 1st set of W anodes had degraded dramatically and only 

poor depolarization levels were reached in those slabs even with an all-passive 

connected assembly. Later on, (Figure 28, bottom, for day 1000) the average 
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performance of the C anodes had degraded significantly and average 

depolarization levels did not reach 100 mV even next to the anode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Rebar current along the yard slab main direction early in the 

exposure period (80 days). 1st set of anodes. All rebars connected (average of 

triplicate slabs). 
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Figure 23 - Rebar current along the yard slab main direction later in the exposure 

period (400 days). 1st set of anodes (average of triplicate slabs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 - Rebar current along the yard slab main direction shortly after the 4 

rebars in the chloride-contaminated zone were disconnected. 1st set of anodes 

(average of triplicate slabs). 
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Figure 25 - Four-hour rebar depolarization after 4 months of normal exposure. 

1st set of anodes. Average results of triplicate slabs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 - Four-hour rebar depolarization after 14 months of normal exposure. 

1st set of anodes. Average results of triplicate slabs. 



www.manaraa.com

54 
 

-50

0

50

100

150

200

0 4 8 12 16 20 24 28 32 36 40 44 48
Position / in

4h
 D

ep
ol

./m
V 

 .

C
W

1st Set

400 days
Anode 10 pcy Cl-

All rebars

Main and auxiliary 
anodes together

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - Four-hour rebar depolarization after 14 months of normal exposure 

plus several days of jointly connecting the Main and Auxiliary anodes. 1st set of 

anodes. Average results of triplicate slabs. 
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Figure 28 - Four-hour depolarization of passive rebars after disconnection of the 

rebars in the chloride contaminated zone. 1st set of anodes. Average results of 

triplicate slabs. 
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Figure 29 summarizes the depolarization measurement results for the 1st 

set of anodes for the different conditions and aging times evaluated. Rebar 

numbering starts at number 1 for the leftmost rebar as shown in the plan view of 

Figure 7. 

 

 Cathodic rebar currents and 4-h depolarization levels increased 

substantially when energizing the 2nd set of anodes, which always acted only on 

the passive rebars. The effect decreased moderately with time over the ~500 

days test period. Both types of anodes performed comparably although the 

performance of the W anodes appears to have degraded somewhat faster 

(relative to the initial levels) than that of the C anodes. Figures 30-32 document 

these trends. 

 

Each periodic measurement series of the test yard slabs yielded individual 

Instant-Off potential and current values for each of the passive rebars in every 

slab. At any given time those values covered a broad range depending on 

proximity of the rebar to the anode and condition of the anode, and the range 

varied further as the anodes aged. Since the rebar material was the same 

throughout and the concrete surrounding the rebar had (with exceptions noted 

below) the same composition, the combined results are expected to reflect the 

overall polarization behavior of the steel surface under those conditions.  The 

graph in Figure 33, with results expressed as current densities by dividing current 

by the nominal rebar surface area confirms that expectation. There the data 

obtained from separate rebars in the six slabs, spanning a wide time period, 

generally delineate a cathodic polarization curve. The data in Figure 33 include 

results for rebars No. 1-5 and 10-12 for the 1st set of anodes, and rebars No. 1-4 

and 11-12 for the 2nd set of anodes. Data for rebars No.5 and 10 while 

evaluating the 2nd set of anodes are not included since, as discussed elsewhere, 

there was some evidence of  chloride levels having increased there significantly 

by that time , causing incipient rebar activation in some cases. As expected, the 

large majority of the recorded net rebar currents were cathodic. The data reflect 
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the typical scatter of test yard slab measurements, of which uncertainty in the 

potential value is expected to be a major contributor. The solid line represents a 

fit to the results based on an abstraction consisting of an activation-limited 

cathodic reaction current density and a potential-invariant passive dissolution 

anodic current density, as described in the Modeling section.  
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Figure 29 - Summary of 4-h depolarization test results for 1st set of anodes. 

Columns indicate average value for rebar pair indicated by numbers. Anode was 

located between rebars 4 and 5. Time indicates period since anode placement.         
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Figure 30 - Rebar current along the yard slab main direction at two different 

anode ages. 2nd set of anodes (average of triplicate slabs). Only passive rebars 

connected. Time indicates period since placement of 2nd set of anodes. 
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Figure 31 - Four-hour rebar depolarization after 14 months of normal exposure. 

2nd set of anodes (average results of triplicate slabs). Only passive rebars 

connected. Time indicates period since placement of 2nd set of anodes. 
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Figure 32 - Summary of 4-h depolarization test results for 2nd set of anodes. 

Columns indicate average value for rebar pair indicated by numbers. Anode was 

located between rebars 3 and 4. Time indicates period since placement of 2nd 

set of anodes.  Only passive rebars connected. 
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3.2.3 Concrete Resistivity and Anode Resistance 

 

 Average values of concrete resistivity of the zones with and without 

admixed chloride of all slabs as function of time since casting the concrete are 

shown in Figure 34.  The resistivity increased with age toward a long term 

average value approaching 25 kΩ-cm for the zone without chloride, and about 

half as much for the zone with admixed chloride. There was modest variability 

from slab to slab (standard deviation typically <20% of the average). 

 

 Anode to rebar assembly resistance measurements for the 2nd set of 

anodes, averaged for a period between ~1 and ~1.5 years after placement were 

~240 and 290 Ω for the Type C and Type W anodes respectively. From 

calculations performed in the Modeling section, it is estimated that ~2/3 of the 

anode to rebar assembly resistance is due to the anode-concrete current spread 

resistance.  
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Figure 33 - Combined EIO-log i representation of the individual Instant-Off 

potential and current density values for passive rebars. Data recorded during 

evaluation of both sets of anodes.  

 

 

 

 

 

 

 

 

 

 

 

 

          
         

      

Figure 34 - Concrete resistivity of the zones with and without admixed  

chloride of all slabs as function of time since casting the concrete. 
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4. DISCUSSION 
 
4.1 Anode Potential-Current Functions (PFs)  

 

Both the galvanostatic RH chamber and the test yard slab revealed, for 

both types of anodes, comparably shaped PFs.  The functions showed at low 

current levels relatively little anodic polarization away from the open circuit 

potential, followed by an abrupt (in terms of a logarithmic current scale) increase 

in polarization as the current approached an apparent terminal value. The curves 

resemble the behavior expected from a system that is approaching a transport-

controlled limiting current density, or alternatively, the presence of a sizable 

ohmic resistance [Jones 1996]. As the curves were constructed using Instant-Off 

potentials, it could be argued that the presence of an ohmic solution resistance 

component would have been cancelled by the test method used. However, as 

noted elsewhere [Sagüés 1994] an Instant-Off (or a high frequency EIS) 

procedure may not completely cancel out all ohmic polarization components if 

the corrosion is localized to small parts of the metallic anode surface. That 

localization may affect various parts of the anode surface as time progresses, so 

this effect could not be completely ruled out even if autopsy tests were to show a 

cumulative, near uniform corrosion wastage of the metallic anode. A transport-

limited polarization component could occur due to dynamic accumulation of 

anode corrosion products on its surface, which would effectively shift the 

equilibrium potential of the anode toward a more positive value as observed. 

These issues merit attention in continuation research.  

 

 For a given test condition and anode service history, the PFs showed 

notable variability among anodes of the same type in the 1st set of anodes  
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tested. Thus, in the aged condition two of the three type C 1st set anodes in the 

replicate test yard slabs had relatively elevated EOC values and low apparent 

terminal currents, while the remaining anode showed much greater activity. 

Significant variability, although at much lower performance levels, existed also for 

the aged type W 1st set of anodes. Unit-to-unit performance variability among 

each type was much less for the 2nd set of anodes. In the test yard slab the 1st 

set of W anodes showed notably inconsistent behavior with that of the 2nd set, 

even though both sets were nominally the same product. The 1st set, as a group, 

performed much worse than the 2nd suggesting a production problem in the 

former. Consequently, in the following the discussion of the PFs of type W 

anodes will address principally the functions determined for the 2nd set, with the 

qualification that production uniformity may be an issue.  

 

 In general and at moderate aging levels and humid conditions, the C 

anodes tended to have more negative open circuit potentials, and faster 

polarization upon current delivery, than the W anodes. Nevertheless, both 

anodes tended to reach roughly the same operating point when coupled with 

passive steel in the test yard slabs.  Similar behavior was observed in the 

galvanostatic tests at 95% RH. Initial trends in the 60% RH chamber (1st set of 

anodes only tested there) showed for both anode types comparable relative PF 

features to those seen in the other environments, but it should be recalled that 

early in that exposure the embedding medium likely still retained much of the 

initial free water. Later behavior in the 60% RH chamber was obscured by data 

scatter.  

 

 Aging of the anodes by delivering current in service was manifested in the 

test yard slab, for both types and sets of anodes, by the continually decreasing 

current output.  Increasing ohmic resistance as concrete aged is expected to 

have been only a minor factor in this decay, since resistivity roughly stabilized in 

value after the first year, as shown in Figure 34.  There was no indication either 
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of any important change in the polarizability of the steel bars that would have 

resulted in a strong decrease in cathodic current demand as time progressed.   

 

As implied by the slow cyclic polarization test results, the current 

decreases most likely reflect primarily an evolution of the PF generally toward 

more positive open circuit potentials and, more importantly, to the onset of 

elevated polarized potentials at increasingly lower current levels. That situation is 

explained in Figure 35 where idealized PF curves are shown for a fresh anode 

(t=0) and for increasingly aged conditions (t1, t2). The anode is coupled to a rebar 

assembly that creates a cathodic current demand as indicated. For each 

condition the operating point of the anode is denoted by the open circle.  The 

effective ohmic drop between the steel and the anode is given by the vertical 

space between the open and filled circles.  As the anode ages, the operating 

point describes the  trajectory indicated by the arrowed red line, with 

corresponding decrease in current delivery and increase in anode potential 

denoted also by red arrows. That interpretation is supported by the observation 

of such trajectories for both types and both sets of anodes in Figures 16 and 17. 

 

 The evolution of anode potential with time toward more positive values 

was much faster for the 1st set of anodes than for the 2nd (Figures 12, 16 and 

17). This behavior is explained in the following as a consequence of the steel 

bars in the chloride contaminated zone having been connected to the anode for 

the first half of the evaluation period of the 1st set of anodes.   Moreover, the 

Type C 1st set anode for Slab 1 (C-1) showed anomalous behavior in that its 

potential elevation trend was reversed at later exposure times (Figure 12). That 

anomalous behavior will be considered next as well.  

  

The chloride contaminated zone contained 1.5% Cl- ion by weight of 

cement, about 4 times the value of commonly assumed critical threshold values 

for corrosion initiation [Li 2001]. The steel bars there were externally connected 

to the anode already during casting and curing of each slab, and were kept so 
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over the first 477 days of testing. That coupling was however not sufficient to 

prevent corrosion initiation of the four rebars in that zone, which were found to be 

in the active condition from the start. Active rebar has low polarizability, and 

given the quite low concrete resistivity during the first year of operation (~7 to 10 

k Ω-cm, Figure 34) and the large steel surface area involved, that group of four 

rebars was an important contributor in determining the potential over much of the 

system. Indeed, as shown in Figure 23, some of those rebars were net anodes 

even though they were only about 15 cm (6 in) from the point anode. Thus, 

except for a very short initial period (Figure 12), for much of the initial year or so 

of evaluation of the1st set of anodes the anode potential was more or less 

stabilized at a value not much below that of active reinforcing steel in chloride-

contaminated concrete (e.g. ~-400 mV CSE).  Consequently the potential-current 

trajectory for the first set normally spanned a shorter potential range than if the 

anode would have been in contact with a more polarizable (i.e. passive) 

assembly. That latter scenario applied to the second anode set, for which the 

rebars in the chloride zone were never connected.  Accordingly, the potential-

current trajectories for the 2nd set anodes were found to span a wider potential 

range (Figure 17) more fitting to the outcome described in Figure 33.  

 

The auxiliary anodes did not have a galvanic current load so in principle 

their potential history should be indicative of the effects of self corrosion plus any 

changes in the composition of the proprietary mortar in the pellet surrounding the 

metallic core. With the exception of the auxiliary C anode in Slab 1, the potential 

changes were significant over time (hundreds of mV) and in the positive direction 

suggesting degradation. A possible cause for that evolution is diffusion into the 

surrounding concrete of the substances in the anode pellet that were responsible 

for zinc activation.  For young concrete with the mixture proportions of the ORC 

in the humid outdoors environment used, diffusivity of ionic species typified by 

that of chloride ions is in the order of 10-8 to 10-7 cm2/sec [Sagüés 1994], and 

likely nearer to  the high end of the range based on the low values of resistivity 
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observed [Berke 1992]. Consequently characteristic diffusion distances of ionic 

species into the surrounding concrete after a year or so could amply exceed 

1cm.  That distance is in the order of the pellet thickness so substantial 

dissipation of anode activators with the test time interval would not be surprising. 

That dissipation could be an important contributor to anode performance derating 

over time, above and beyond any detrimental effects from galvanic current 

delivery. 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 - Idealized evolution of anode PF with aging and effect on operating 

conditions. EA, IA: anode potential and current; o.c.: open circuit condition. Black 

circles indicate the polarization condition of the anode. Filled circles correspond 

to the effective rebar polarization condition, at a potential equal to that of the 

anode plus an ohmic drop difference. Arrows indicate trends as aging time 

increases 
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The more straightforward anode degradation effect expected from current 

delivery is loss of anode mass. Based on the measurements reported in Section 

2.2, rounded-off values of 110g and 45 g will be assigned in the following to the 

initial anode metallic mass of Type C and W anodes respectively.  Those masses 

correspond respectively to 1.68 and 0.69 mol of Zn, based on the atomic weight 

of Zn = 65.39 g/mol. Assuming dissolution as Zn+2 ions the maximum (also called 

the "theoretical") amount of galvanic charge QT that could be delivered can be 

calculated. The amount, equal to 2 F nM, where F=96.49 k Coul/equivalent is 

Faraday's constant and nM is the number of moles, is then QT=324 k Coul and   

QT =133 k Coul for C and W anodes respectively. Anode self corrosion and loss 

of physical continuity between parts of the anode or with the connecting wires 

often lower significantly  the practical amount of possible charge delivery by 

actual cathodic protection anodes, e.g. to  ~0.5 QT.  Thus, even if other factors 

have not already had significant derating consequences, by the time the anodes 

evaluated here deliver about 160 k Coul (C) or 65 k Coul (W), they would be 

expected to be approaching the end of their effective service life.   

 

 As shown in Figure 14, all type W anodes in the 1st set tested in the yard 

slabs showed substantial loss of the ability to provide galvanic current after 

having delivered only 10 to 22 kCoul, or only ~7% to 15% of QT. Two of the C 

anodes in the 1st set experienced faster current derating at Q ~10% of QT, but 

anode C-1 in that set still retained appreciable current capacity at Q ~20% of QT.  

Performance of the W anodes in the 2nd set showed considerable improvement 

over the 1st, as current remained at substantial levels for all three anodes with Q 

approaching 25% of QT. The 2nd set of C anodes performed, up to the final data 

acquired at Q ~10% of QT, similarly to the earlier stages of the1st set when only 

moderate current decay was taking place.  

 

The potential trends as function of Q shown in Figure 15 correlate well 

with the current trends only for the 2nd set of anodes, likely because of the 

obscuring effect of coupling to the active bars during the first part of the 
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evaluation of the 1st set.  The 2nd set potential and current trends, if they were to 

be sustained over later aging stages, would suggest that current delivery for 

these test conditions would reach values well below 100 μA,  and potentials 

approach ~-200 mV (thus providing little beneficial effect), at Q ~¼ to ⅓ QT  for 

the Type C and W anodes respectively.   Such projection would be somewhat, 

but not extraordinarily less than the behavior expected for many galvanic anode 

systems as indicated earlier.   

  

The energized and the auxiliary 1st set Type C anodes in Slab 1 showed 

anomalous active behavior, as suggested by the highly negative potential of both 

anodes late in the test period, and by the high current and total charge delivery of 

the energized anode. This behavior is suggestive of anode activation beyond that 

expected from the effect of the anode pellet mortar and the initially chloride-free 

ORC medium. Such activation is likely to have occurred because of chloride 

transport from the chloride contaminated zone into the nearby concrete 

surrounding the anode. As indicated earlier, the characteristic chloride diffusion 

distance in the sound concrete could easily be >> 1 cm after 1year, and it may 

have been even higher locally due to the instances of poor consolidation noted 

earlier. Also as indicated earlier, there were also signs of incipient activation of 

rebars No. 5 and No. 10, (immediately on either side of the chloride zone) in 

some of the slabs during the last stages of testing. Those observations are 

further indication of substantial chloride diffusion into the previously chloride free 

concrete.  Consequently, the behavior of the 1st set of C anodes in Slab 1 may 

be explained by that slab being the first where chloride intrusion into the 

previously chloride-free concrete reached a sufficient level to promote enhanced 

activation of that anode. This explanation will be further examined in continuation 

testing of the auxiliary and disconnected 1st set anodes of the other slabs to 

ascertain if signs of activation develop there as well in the future.  It is noted that 

the 2nd set anodes were intentionally placed one extra rebar step further than 

the 1st set from the chloride transition line, to minimize the chances of 

extraneous activation from Cl- ions diffused in from the chloride-rich zone.  
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4.2 Rebar Polarization 

 

The poor rebar polarization levels achieved by the 1st set of anodes while 

all rebars in the yard slab were connected can be ascribed to the low 

polarizability of the active rebars, as discussed earlier. The rebar current 

distribution patterns along the slab main direction showed that, before their 

disconnection, rebars in the chloride-contaminated zone were often net anodes, 

contributing at times a total anodic current comparable to or exceeding the 

current supplied by the point anode. During that period, the rebar potential 

distribution along the slab main direction showed clearly that the rebars in the 

chloride contaminated zone, which exhibited potentials typical of actively 

corroding steel, were a substantial polarizing source for the rest of the system. 

The steel in the chloride zone of the slabs had potentials similar to, or even more 

negative than, the typical potential of the main anode, which in turn was more 

negative than that of the bars in the chloride-free concrete zones. When 

conducting depolarization tests, the overall potentials relaxed relatively little, 

toward terminal values influenced by those of the active rebars. Consequently, 

the overall depolarization levels were poor. These results indicate also that point 

anodes of this size and at the placement density used, and for the amount of 

steel present in the slabs, are not likely to provide substantial levels of 

conventional cathodic protection of an already corroding rebar assembly.  

 

 After disconnection of the active rebars in the 1st set tests, the anodes 

were indeed the most negative elements in the system, and the only source of 

cathodic polarization of the remaining, passive, bars.  The steel depolarization 

levels for the Type C anodes, which were still quite active at that time, improved 

accordingly to average levels in excess of 100 mV for the rebar group closest to 

the anode. The 1st set of Type W anodes had already degraded considerably by 

that time and failed to achieve appreciable levels of polarization even for only the 

passive rebars.   
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For the 2nd set of anodes polarization involved always only the passive 

rebars, and overall rebar polarization was consequently improved from the 

beginning compared with that of the 1st set. Furthermore, the 2nd set of Type W 

anodes did not show the deficiency affecting the 1st set and steel polarization for 

those anodes improved accordingly.  

 

 The composite cathodic rebar polarization curve shown in Figure 33 

shows features well establish by previous work, including an apparent Tafel 

region at low polarization levels followed by incipient indications of the 

establishment of a diffusion control regime at greater polarization levels. The 

main cathodic reaction has the characteristics of oxygen reduction, and the 

polarization/current function parameters match approximately those reported 

elsewhere for steel in moderately humid concrete [Sagüés 2003].  Further 

analysis of this curve is presented in the Modeling section (Chapter 5). 
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5. MODELING  
 
5.1 Introduction 

 

A one-dimensional numerical model was developed to study the behavior 

of galvanic anode systems for patch repair applications in reinforced concrete 

structures. The anode performance is measured by how far away from the patch 

perimeter (the “throwing distance” xT) an amount of cathodic polarization meeting 

or exceeding a required minimum (the “prevention criterion” CP) can be provided 

to the passive rebar surrounding the patch3. A generic patch configuration with a 

1-D approximation was used in the modeling to calculate the throwing distance 

that could be achieved by a given number of anodes per unit perimeter of the 

patch area, concrete thickness, concrete resistivity, amount of steel and amount 

of polarization needed for cathodic prevention. 

 

 Several numerical models including finite element and boundary element 

methods have been applied in the past to reinforcing steel corrosion [Presuel-

Moreno 2005B, Kranc 1994, Sagüés 1994].  The present model was based on 

the finite differences method using a regular spreadsheet program. Experimental 

data on the anodic polarization as a function of service time (PF curves), and the 

polarization information for the steel coupled to the anode presented in the 

previous sections, were used as input parameters in conjunction with other 

variables that will be introduced later. Results from the model allow determining 

the current and potential distribution on the cathode as a function of the distance 

from the anode element. 

                                                 
3 The value of CP is an input to the model, to be chosen based on the extent of chloride 
contamination in the concrete around the patch and how the chloride threshold depends on 
potential. This issue is discussed separately later on.  
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5.2 Anode - Rebar System Modeled 

 
 The simplified system chosen for implementation of the model consists of 

a reinforced concrete slab (which may represent a bridge deck, parking structure 

floor, or a part of a wall) having a patch zone in which all the concrete has been 

replaced as shown in Figure 36.  The patch is assumed to be roughly circular 

with anodes placed at uniform intervals w (anode center-to-center distance) just 

inside the patch perimeter. It is assumed for simplicity that xT is not large 

compared with the dimensions of the patch, so radial spread of the galvanic 

current is modest.  The rebar mat (or mats) in the slab is treated as roughly 

corresponding to a uniform amount of steel surface to be polarized per unit area 

of the external concrete footprint. Thus, the problem can be considered on first 

approximation as a   1-D current distribution calculation. Further simplifications 

involve assuming uniform concrete resistivity, concrete thickness and rebar 

polarization properties. The latter include a time-and potential-independent 

anodic passive dissolution current density and a time independent cathodic 

reaction (oxygen reduction) current density  equal to that determined 

experimentally on the rebars in the yard slab tests, but constricted by a limiting 

current density of fixed value.  The polarization function (and its dependence on 

service time, t, or total charge delivered, Q) of the point anode correspond to that 

observed experimentally for each of the two types of anode investigated. The 

current needed to polarize the region of steel inside the patch area is neglected 

for simplicity. A variation of that treatment was conducted as well to take into 

account for the presence of that steel and is presented later on. 

 

The base conditions outlined above then correspond to an anode placed 

at the end of a linear concrete beam, with the galvanic current running lengthwise 

and a distributed sink current density on the steel given by the local concrete 

potential and the polarization function of the steel. At the anode end of the beam 

the potential is a function of the end potential and the polarization function of the 

anode. The nomenclature to be used is listed in Table 2. 
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Figure 36 - Plan view of idealized system chosen for implementation of the model 

 

5.3 Principles and Assumptions 

 

 Calling ESU the steady state potential that the passive rebar in the 

surrounding zone would achieve in the absence of any galvanic coupling with the 

rebar in the patch, and ES (x,t) the rebar potential at service time t and a distance 

x away from the patch perimeter, then the performance condition is given by  

 

  ESU - ES (xT,t) = CP       (3) 

 

All electrode potentials are given in the CSE scale.  

 

 As discussed earlier, within certain limits, anode aging may sometimes be 

better described not in terms of service time but rather by the total amount Q of 

charge delivered since the moment of placement in service. In such case the 

performance condition can be alternatively given as 

 

  ESU - ES (xT,Q) = CP       (4) 
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In the following, a formalism on Q will be presented for completeness 

alongside equations based on time as the aging parameter. However, 

calculations and examples will be limited for brevity to the case of time as the 

aging parameter.  

 

 The desired projection model output is therefore the value of xT , for the 

chosen values of CP and t (or Q), as function of the other system conditions 

which serve as model inputs.  

 

 Following the treatment described elsewhere [Presuel-Moreno 2005B] for 

similar conditions, at any given distance x charge conservation under the above 

assumptions requires that the concrete potential satisfies: 

 

  d2EC/dx2 = - ρ SF tC-1 iS      (5) 

 

The following boundary conditions apply: 

At the patch perimeter (anodes placed there), by Ohm's law: 

 

  IA=w tC ρ-1 dEC/dx |x=0      (6) 

 

At the outer slab edge (no current leaving the slab): 

 

  dEC/dx = 0|x=L       (7) 

 

 The net steel current is assumed to depend only on potential, iS(ES). It is 

noted that given iS(ES), setting iS=0 yields the value of ESU. The anode current is 

assumed to depend on both potential and aging condition, IA(EA, t) (or IA(EA,Q)).  

 

 Accounting for the presence of the current constriction resistances, and by 

using the configuration parameters k1= ρ SF tC-1and k2= SF w, the ruling equation 

and anode-end boundary condition become: 
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  d2EC/dx2 = - k1 iS (EC-RS iS)      (8) 

 

  IA(EC+RA IA)= k2 k1
-1 dEC/dx |x=0     (9) 

 

 Thus, giving as inputs k1, k2, L, RS and RA as well as the functional 

relationships iS(ES) and IA(EA, t) (or IA(EA,Q)), solution of Equation (5) with the 

boundary conditions in Eqs. (6 to 9) yields EC(x, t) (or EC(x, Q)) as output. The 

use of the parameters k1 and k2 permits obtaining solutions that are roughly 

scalable for all systems having the same values of those parameters, and the 

same anode and steel polarization properties. Generality is precluded however if, 

for example, the factors that determine local resistance vary sufficiently from 

system to system.  Post-processing of that output then yields the value of the 

throwing power xT for any chosen criterion CP at the specified anode aging 

condition, therefore achieving the objective of the performance projection model.   

  

 The sign convention used in writing the system equations is to declare     

iS < 0 when iS is a net cathodic current. That choice permits keeping the 

customary polarity designation when evaluating the results, with electrode 

potentials referred to the electrolyte and absolute values of activation-polarized 

anodic/cathodic current densities respectively increasing/decreasing with 

potential.  Interpretation of the findings is thus facilitated compared with other 

alternatives [Kranc 1994]. 

 

5.4 Implementation of the Model 

 

5.4.1 Model Inputs 

 

5.4.1.1 Overall Dimensions and Global Concrete Properties 

 

The ranges of values for model inputs k1and k2 were chosen to bracket 

typical dimensional and concrete resistivity conditions that may be encountered 
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in the field.  L was fixed at 200 cm which approaches a semi-infinite condition 

compared with the throwing power values that may be usually expected; the 

solution is in that case conservatively evaluated and with low sensitivity to the 

precise value of L.  

 

5.4.1.2 Local Resistance 

 

The following are rough estimates of the current constriction resistances of 

rebar and anode, intended to refine to some extent the throwing power 

calculations. More accurate solutions would necessitate use of a 

multidimensional model, but such step may be premature considering the limited 

extent of the performance data base available at present.  

 

 Model inputs RS and RA were estimated from geometric considerations 

and from the input values of k1 and k2 (Table 3). For RS the approach 

corresponding to the current flow between two concentric cylinders was assumed 

to apply on first approximation.  In such case the length-specific current 

constriction resistance RSUL is given by [Sagüés 1994]: 

 

  RSUL=ρ (2π)-1 ln (tC/ΦS)      (10) 

 

where ΦS is the rebar diameter (diameter of the inner cylinder) and tC is an 

approximation to the diameter of the outer cylinder, in this case taken to be in the 

order of the characteristic thickness of the system. Taking into account the 

problem scaling, the term RS in Eq. (8) is then 

 

  RS=π ΦS RSUL         (11) 

 

 Complications in estimating RA stem from  the metallic anode being 

surrounded by consecutive shells corresponding to corrosion products, 

proprietary anode pellet mortar, anode placement mortar/concrete if different 
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from the slab concrete, and finally the slab concrete itself. Moreover, current 

distribution can be highly complicated if the metallic surface of the anode is not 

uniformly activated. In such case the polarization function IA(EA, t), even if 

determined by instant-Off measurements,  may itself contain a considerable 

ohmic component per arguments described in detail by Sagüés [1994] and as 

discussed elsewhere in this report.  Assuming that only the uniform part of the 

current constriction effect needs to be considered, the value of RA may be 

estimated on first approximation as corresponding to that for the space between 

a sphere of effective diameter ΦA in an spherical medium of diameter in the order 

of tC and resistivity equal to that of the slab concrete [Landolt 2007], so that  

 

  RA ~ ½ ρπ-1 [(ΦA)-1 - tC-1]      (12) 

 

 Assuming that the anode pellet mortar is highly conductive and that any 

ohmic effects due to corrosion product accumulation are already built into IA(EA, 

t), then  the effective anode diameter ΦA is considered to be in the order of the 

characteristic outer dimension of the anode mortar pellet, ΦA ~ ½ (pellet width + 

pellet thickness).  A rounded-off value representative of both anode types 

evaluated was used (Table 3).  

 

5.4.1.3 Polarization Function – Steel 

 

 The function iS(ES) for the model realizations explored below is chosen to 

be representative of the behavior of the steel used in the test yard slabs.  The 

function is abstracted starting from the combined data set of instant-Off potential 

measurements as function of rebar current given earlier in Figure 33. The 

abstraction consists of assuming for the cathodic reaction an increasing current 

density with decreasing potential following simple Tafel kinetics, until a nominal 

limiting current density value iL is reached.  For more negative potentials the 

current is fixed at iL thus creating a simplified combined activation-concentration 

limited cathodic polarization curve. The anodic reaction on the rebar is assumed 
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to correspond to a potential-independent passive dissolution current density iP. 

Thus when i0S 10^((ES-E0S)/βCS)  <= iL : 

 

  iS = i0S 10^((ES-E0S)/βCS) - iP     (13) 

 

and when otherwise: 

 

  iS = iL - iP        (14) 

 

Where i0S, E0S and βCS  are the nominal exchange current density, nominal 

equilibrium potential and nominal Tafel slope respectively for the species 

undergoing the cathodic reaction. The values of iP, i0S , E0S 4 and βCS were 

determined by least square fitting to the data shown in Figure 33 (Table 3), 

treating the portion of the polarization diagram spanned by the data as if the 

cathodic reaction were simply activation-polarized. The resulting abstracted 

function is shown by the solid line in Figure 33. Application of the chosen 

parameter set resulted in a visually plausible fit function.  However, it is cautioned 

that the fit procedure is prone to produce alternative parameter sets with nearly 

similar fit quality, so the set chosen for these calculations should be viewed only 

as a representative example of the steel polarization function parameters. 

 

 The value of iL is a preset parameter. A comparatively large value (iL = 2 

μA/cm2) was chosen to represent cases where cathodic diffusional limitation was 

unlikely (e.g. concrete atmospherically exposed at moderate relative humidity 

regimes [Sagüés 2003]). Smaller iL values were chosen based on previous 

findings [Sagüés 2003] to represent moist conditions.    

 

                                                 
4 The values of i0S , E0S are not independent for the purposes of these calculations [Kranc 1992] 
so E0S  was specified arbitrarily. 
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5.4.1.4 Polarization Function - Anode (PF) 

 

As indicated earlier, the following application is limited to the use of time 

as the anode aging parameter.  The functions IA(EA, t) from instant-Off 

measurements for individual anodes at various t have been shown when 

presenting the PF results in  Section 3.  Tests with various abstraction 

representations showed that a function of the form shown in Eq.(15) yielded a 

reasonably fit to the experimental potential-current curves of individual anodes 

under nearly all circumstances. Eq. (15) is written with service time as the age 

parameter, but it is expected that on first approximation a comparable form could 

be used with Q as the aging parameter.  

 

  EA(IA,t) V-1= EA0(t) V-1 + (IA/IA0(t))n(t)    (15) 

 

 Here EA0 is the unpolarized potential of the anode, and IA0 is the anode 

current that, when delivered, results in 1V of anode polarization over EA0 

(effectively corresponding to an anode potential close to that of isolated passive 

rebar, where the anode provides essentially no protection). The exponent n 

indicates how steeply the anode output approaches that level as current demand 

approaches that limit. It is emphasized that Eq.(15) is a convenient empirical fit 

function and no relationship with fundamental causes is implied.  The parameters 

EA0, IA0 and n were obtained by least square fit from the polarization curve of 

each individual anode at various ages (Table 3). Those parameters exhibited 

significant variability for the replicate specimens of a given type of anode at a 

given age, reflecting the unit-to-unit variability in behavior noted earlier. For the 

purposes of obtaining a generic age-dependent anode performance curve, the 

combined trends of EA0, IA0 and n with age for all anode specimens of a given 

type were displayed graphically and a representative simplified variation function 

with age was abstracted in each case.  Convenient empirical relationships thus 

found, again not necessarily reflecting basic issues were: 
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  EA0(t) = EB + a (t/tu)        (16) 

 

  IA0(t) = IB (t/ tu) b       (17) 

 

  n(t) = nB (t/tu) c       (18) 

 

Where tu is the time unit (e.g. months). 

 

 Those relationships reflect the observation that the unpolarized potential 

tended to increase roughly linearly with time, while both the limit condition current 

and the steepness of approach to it tended to increase with time, but at a rate 

that decayed as time progressed (which resulted in parameters b and c being 

significantly <1). 

 

5.4.2 Implementation of the Model - Computational Procedure 

 

Numeric solutions of the ruling equation with boundary conditions were 

obtained by the finite differences method using a 20-element array and an 

iterative Jacobi technique with a relaxation factor between consecutive 

calculations chosen to achieve stability and prompt convergence of the solution.  

Separate calculations were performed for each value of time t.  The functions 

iS(ES) and IA(EA, t) were entered as numeric arrays, which permitted manipulation 

to obtain reciprocal functions by lookup and interpolation as well as easily 

obtaining values of expressions such as iS (EC-RS iS) or IA(EC+RA IA). Entry by 

numeric array also provided flexibility to accommodate if desired functions other 

than the analytical expressions given in the previous section.  General model 

parameters for calculated cases are given in Table 4. 
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5.4.3 Model Application Scope  

 

The model is not intended for precise design purposes, but rather as an 

exploratory tool to obtain insight and identify broad operating conditions.  As such 

sweeping simplifications were made such as the use of a one-dimensional 

representation, an approach that could be vastly improved if sufficiently accurate 

data on component properties became available.  The xT model output is 

obtained by interpolation between consecutive spatial nodes, so reported values 

should be viewed as only approximate estimates with only marked changes 

meriting note. In these calculations the spatial node array is not intended to 

replicate the placing of individual rebars. Thus values of xT are reported 

nominally with cm resolution for comparison purposes, with the understanding 

that in an actual rebar grid the polarization pattern would be strongly influenced 

by the local geometry.  Further model development is expected in continuation 

work [Dugarte 2010]. 

 

5.4.4 Sensitivity Analysis  

 

A sensitivity analysis was performed to establish how model results may 

be affected by variations in the choice of assumed steel polarization parameters. 

The parameters selected for this analysis were the nominal Tafel slope for 

cathodic reaction on steel (βCS), and the anodic passive current density on steel 

surface (iP), both of which may be affected by considerable uncertainty.  As a 

slave variable, the nominal exchange current density for the cathodic reaction of 

steel (i0S) was chosen coupled to the variations in iP and βCS so that the value of 

ESU always remained fixed at the same value used for the baseline model 

computations. That way the calculations evaluated sensitivity to the polarizability 

of the steel without the added complication of changes in the unpolarized steel 

potential.  The value of βCS was varied from its central scenario conditions value 

of 138 mV downwards to 100 mV (an approximate low end of commonly reported 
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values [Glass 2000, Sagüés 2003]), and in to opposite direction, but by the same 

amount, to 176 mV to span a plausible range of conditions.  The parameter iP 

was varied from its central scenario choice of 2.6 E-08 A/cm2 to ½ and 2 times 

that value (1.3 E-08 and 5.2E-08 A/cm2 respectively) to account for an 

appreciable uncertainty range. All calculations were performed with k1=1kΩ and 

k2 =50 cm, for 10 mo age of both types of anode. Only cases with zero current to 

the patch region were explored.  
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Table 2 - Nomenclature of model variables and parameters. 
_____________________________________________________________________________________ 

t (s)  amount of time since anode placement and energizing 

Q (coul) integrated electric charge delivered by the anode since placement  

  and energizing 

x (cm)  distance away from perimeter of the patch (where anodes are  

  placed) 

xT (cm) throwing power 

CP (V)  cathodic prevention criterion value 

L (cm)  distance from perimeter of the patch to outer edge of the concrete  

  slab.  

tC (cm) concrete slab thickness 

w (cm) anode center-to-center placement distance along patch perimeter 

SF(cm2-cm-2) steel placement density (amount of steel surface area per surface 

area of concrete slab footprint) 

ΦS (cm) rebar diameter 

ΦA (cm) effective anode diameter 

ρΩ-cm) concrete resistivity 

iS (A-cm-2) net current density on steel surface 

iP (A-cm-2) anodic passive current density on steel surface 

iC (A-cm-2) cathodic current density at the steel surface 

IA (A)  galvanic current delivered by anode 

EC (V) potential of the concrete away from the immediate proximity of the 

steel surface or the metallic surface of the anode.  

ES (V)  potential of the concrete at a point immediately adjacent to the steel 

  surface 

ESU (V) unpolarized steel potential 
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Table 2 (Continued) 

___________________________________________________________ 
 

EA (V)  potential of the mortar at a point immediately adjacent to the 

metallic surface of the anode 

RSUL (Ω-cm)  effective length-specific current constriction resistance of concrete 

at the steel surface 

RS (Ω-cm2) effective area-specific current constriction resistance of concrete at 

the steel surface 

RA (Ω) effective current constriction resistance of concrete around the 

active zone(s) of the metallic portion of the anode.  

k1 (Ω  configuration parameter: k1 = ρ SF tC-1 

k2 (cm) configuration parameter: k2 = SF w 

i0S (A-cm-2) nominal exchange current density, cathodic reaction on steel 

E0S (V) nominal equilibrium potential, cathodic reaction on steel 

βCS (V) nominal Tafel slope, cathodic reaction on steel 

iL (A-cm-2) nominal limiting current density, cathodic reaction on steel 

EA0 (V) unpolarized anode potential 

EB, a(V) EA0 time dependence parameters 

E'B, a'(V) EA0 Q dependence parameters 

IA0 (A)  anode current demand resulting in 1V polarization 

IB (A), b IA0 time dependence parameters 

I'B (A), b'  IA0 Q dependence parameters 

n   anode potential steepness of variation with current demand 

nB, c   n time dependence parameters 

n'B, c'   n Q dependence parameters 

tu (e.g. mo)  time unit for parameter abstraction 

Qu (e.g. Coul) charge unit for parameter abstraction 

______________________________________________________________ 
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Table 3 - PF, steel and other parameters for model cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 - General model parameters for calculated cases. 
 

 

 

 

 

 

 

 

Steel: 

i0S =  2.03 E-9 A-cm-2   

E0S =  -0.00 VCSE
 *  

βCS =  0.138 V  

iP =  2.59 E-8 A-cm-2 

iL =   2 E-6 A-cm-2 

ESU= -0.153 VCSE ** 

ΦS = 2.2 cm 

 

*Nominal value 

**Value resulting from the 

other inputs 

 

Parameters used as base 

for k1, k2 cases and for 

constriction resistances 

ΦA =  5 cm 

tc =    20 cm 

L =     200 cm 

SF =   1 

 

Anode EB (V) a (V) IB (A) b nB c 

C -1.16 0.0057 2.0E-03 -0.43 2.7 -0.03 

W -0.85 0.0085 5.4E-02 -1.7 0.81 0.33 

k1 (kΩ) 3.33 , 1.00, 3.00 

k2  (cm) 25, 50, 75 

CP (V) 0.10, 0.15, 0.20 

T (months) 1, 4 , 10, 13 

Anode Current to 

Steel in Patch  
0, ½  
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5.4.5 Model Validation  

 

Validation of the model projections by comparison against a well 

characterized actual system was performed and results are presented in 

Appendix 1. There, the model was applied to compute the extent of polarization 

delivered to the passive rebars in the yard slabs by the sacrificial point anodes at 

various ages. The results supported the validity of the approach used here.  

 

5.5 Model Results  

 

Figure 37  presents model results for the C anodes, showing the throwing 

distance xT as function of k1 and using the cathodic prevention criterion value CP  

as a secondary parameter, for a fixed value of k2=50 cm and for anode ages of 1, 

4, 10 and 13 months respectively. Those ages were chosen to correspond to the 

times for which PF data were collected in the yard slabs.  Also for the C anodes 

Figure 38 shows as a function of time, and for a fixed value of k1=1kΩ, the effect 

of variations in the value of k2 on the throwing distance.  Figures 39 and 40 show 

similarly displayed results for the W anodes. In all cases, the polarization amount 

can be converted into steel current density by reference to Figure 33; the results 

are  iS = 0.11, 0.29 and 0.70 μA/cm2 for CP = 100, 150 and 200 mV respectively.  

It is noted that for these model calculations the area of steel inside the patch was 

considered to be relatively small, and the current needed to polarize this area 

was neglected. The resulting projections are consequently somewhat optimistic, 

and the derating effect of current flowing into the patch is discussed afterwards.  

 

 The results can be best interpreted by recalling that a value of k1=1kΩ , at 

the center of the horizontal axis in Figures 37 and 39, corresponds to a 

reinforced concrete slab of thickness tC=20 cm (8 in), a steel density factor SF=1 

and a concrete resistivity ρ = 20 kΩ-cm, baseline conditions that may be 

considered typical of many bridge deck or parking structure conditions. The other 
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k1 values for which results are given, 0.33 and 3.3 kΩ correspond for the same tC 

and SF combination to concrete resistivities of 6.7 and 60 kΩ-cm, or severe and 

mild corrosion propensity conditions respectively.  Since SF was chosen as unity 

for theses examples, the parameter value k2= 50 cm corresponds to a placement 

density of one anode for every 50 cm of patch perimeter, which may be 

considered to be a reasonable practical value. Finally, CP values of 0.1, 0.15 and 

0.2 V represent depolarization criteria for cathodic prevention that are 

increasingly more conservative [Presuel-Moreno 2005B]. In Figures 38 and 40 

and for the above combinations, variations of k2 to values of 25 cm and 75 cm 

represent anode spacing near the tighter or wider extremes respectively of 

expected practical applications.  

  

Figure 41 presents the results from the sensitivity analysis. Changes in 

βCS in either direction from the central scenario resulted in moderate relative 

changes (by about a factor of 2 or less) in the value of the projected throwing 

distance for the 100 mV polarization criterion.  The effect was comparably 

moderate for the 150 mV criterion when the excursion was toward greater values 

of βCS, but if βCS was reduced to 100 mV the resulting lower rebar polarizability 

became effectively prohibitive. For the most demanding criterion, 200 mV, 

excursion of βCS toward 176mV increased xT above the zero or nearly zero 

values at the central scenario, but not enough to exceed 10 cm. Analogous to the 

effect of variations in βCS, changes in iP had moderate impact on the 100 mV 

criterion throwing distance, and stronger relative effect for the cases of the more 

demanding criterion values.  Overall, the sensitivity calculations showed that 

relatively wide changes in key steel polarization parameters induced no dramatic 

change in the highest projected values of xT for the age condition examined. 

Large relative changes in xT were projected for the more demanding polarization 

criteria cases, but the absolute values in those cases tended not to be large.   

 



www.manaraa.com

90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37 - Model projections of throwing distance for C anodes at the indicated 

service times. All graphs are for k2 = 50 cm, CP as shown. Absent symbol/line: 

polarization not achievable or xT < 1 cm. 
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Figure 38 - Model projections of throwing distance for C anodes, as a function of 

service time. Legends indicate values of k2 (cm). Absent symbol/line: polarization 

not achievable or xT < 1 cm. 
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Figure 39 - Model projections of throwing distance for W anodes at the indicated 

service times. All graphs are for k2 = 50 cm, CP as shown. Absent symbol/line: 

polarization not achievable or xT < 1 cm. 
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Figure 40 - Model projections of throwing distance for W anodes, as a function of 

service time. Legends indicate values of k2 (cm). Absent symbol/line: polarization 

not achievable or xT < 1 cm. 
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Figure 41 - Sensitivity analysis of model projections to the choice of βCS and iP, 

for 10 mo anode age. Dashed lines denote the central scenario. Absent 

symbol/line: polarization not achievable or xT < 0.1 cm. 
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5.6 Model Discussion 

 

 Using the C anode cases as an example, and for the above assumed 

baseline conditions, the 1-month projections indicate an appreciable throwing 

distance, 33 cm for a 100 mV polarization criterion.  For that polarization level 

reducing the anode spacing to 25 cm elevated xT to 40 cm, while it still reached 

29 cm even for the 75 cm wide anode placement case.  The projected throwing 

distance for k2=50 cm however degraded to less than 10cm when the wide 

anode spacing and a more conservative polarization criterion (200 mV) was 

used. A throwing distance of less than 10 cm may be considered to be quite 

ineffectual as it is in the order of rebar spacing in many applications.  The other 

scenarios in the same figures can be similarly evaluated for insight.   

 

 The projected throwing distance decreased with service time to various 

extents as shown in figures 38 and 40, depending strongly on the polarization 

prevention criterion used.  Thus, continuing with the above example, for baseline 

conditions and 13 mo age the projected 100 mV throwing distance for the 50 cm 

anode spacing was reduced to 23 cm.  For the same anode spacing Increasing 

the polarization criterion to 150 mV lowered the projected throwing distance to 

less that 10 cm, and the model projected that the 200 mV criterion was no longer 

reachable. The 200 mV criterion could be met at 13 mo by reducing the anode 

spacing to 25 cm, but the projected throwing distance was poor (<10 cm).  

 

 The projections for the W anodes (Figures 39 and 40) resulted in xT values 

that were comparable to those of the C anodes at early ages, but generally 

smaller later on, in keeping with the relative anode polarization behavior of the 

anodes in the yard slab tests as noted earlier.  Otherwise, the same general 

trends and observations noted for the C anodes apply here as well.  

 

As indicated earlier, the projections would become more pessimistic when 

current demand by the steel in the patch area is considered. The extent of this 
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effect was addressed by evaluating model projections for the case where the 

region inside the patch required half of the galvanic current from the anode, so 

that the anode current is distributed equally between the patch area and the 

surrounding concrete. The results are presented in Table 5 for the baseline 

condition with k1=1kΩ and a 50 cm anode spacing. As expected the projected 

performance degraded compared to the cases where the entire anode current 

flowed outside the patch. The extent of degradation depended particularly on the 

polarizability of the anode.  Thus the projected effect was relatively small early on 

when the added current demand caused only a relatively small shift of the anode 

potential toward more positive values. However, the shift would be more 

pronounced as later anode ages are considered, where a consequently steeper 

polarization curve applies. At age 13 months the projections indicated a 

substantial reduction in the throwing distance to about ⅓ to ½ of the value 

obtained when no current to the patch was assumed depending on anode type. 

In an actual system the patch zone may be small compared to its surroundings, 

so the galvanic current partition and resulting effect in polarization would be 

somewhat in between the two extreme situations (no current vs. ½ of the current 

going to the patch) considered in Table 5.  
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C Anode

Age CP / V XT /cm XT /cm

0.1 33 26

0.15 18 11

0.2 8 1

0.1 28 19

0.15 14 5

0.2 4 –

0.1 25 14

0.15 10 –

0.2 – –

0.1 23 12

0.15 8 –

0.2 – –

10 mo

13 mo

1 mo

4 mo

Alternative   
( ½ current to 

patch)

Base Cases  
(No current 

to patch)
W Anode

Age CP / V XT /cm XT /cm

0.1 29 22

0.15 15 8

0.2 5 –

0.1 27 19

0.15 13 5

0.2 3 –

0.1 21 10

0.15 6 –

0.2 – –

0.1 16 3

0.15 1 –

0.2 – –

10 mo

13 mo

Base Cases  
(No current 

to patch)

Alternative   
( ½ current to 

patch)

4 mo

1 mo

Table 5 - Effect of current demand by the patch zone. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Projections over periods of time longer than 13 months are subject to 

considerable uncertainty as those would be beyond the testing period that 

yielded the PF data used as input to these model calculations. However, the 

trends from Figure 23 and the performance derating information as function of 

total charge in Figures 16 and 17 suggest that both types of anodes may settle, 

under conditions resembling those in the test yard slabs, into quasi-steady state 

operating currents in the order of ~0.1 mA after another year or two of operation. 

The corresponding charge delivery would be~3.2 k Coul/year.  Barring the effects 

of any other aging mechanism (such as dissipation of pellet activator compound 

into the surrounding concrete), and based on the arguments made in previous 

section, anode operation at that rate might continue over about a decade of 

years range before approaching excessive consumption levels. Due to the 

relative shape of the anode and rebar polarization curves, under the conditions 

modeled here the anodes tend to operate near the limit current condition defined 

by the upward leg of the PF.  As shown in Figure 15, at age 13 months that 

current for both C and W anodes is in the order of ⅓  to ½ mA. As noted before, 
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by 13 months age the projected throwing distance had begun to shorten 

considerably especially for the more demanding polarization criteria.  The effect 

on xT of further lowering the anode current by twofold or more toward ~0.1 mA 

may be inferred from the projected decrease of xT as anode spacing increased in 

comparable proportions (effectively lowering the anode current available per unit 

of patch perimeter) and also from the results of halving the anode current shown 

in Table 5. Such comparison suggests that as anode currents decay into the 

order of 0.1 mA the throwing distance for satisfying the 100 mV polarization 

criterion would become two or more times smaller than those projected for 13 

mo, yielding quite poor projected performance. By the same argument, the more 

demanding polarization criteria (150 mV, 200 mV) would result in even poorer or 

nil projected long performance.  
 

In summary, the model projections together with the aging information 

detailed in Chapter 3 suggest that anode performance in the likely scenarios 

discussed above, as measured by the throwing distance, may seriously degrade 

after only a few years of operation even if a 100 mV corrosion prevention 

criterion were assumed.  

 

It has been proposed in the technical literature that, even with small 

polarization levels, significant corrosion control benefits can accrue from 

sustaining cathodic current densities  with low values ranging from 0.2 μA/cm2 to 

as little as 0.02 μA/cm2 on passive steel [Pedeferri 1996, Sergi 2008].  The lower 

end of that range may not be relevant to atmospherically exposed concrete, for 

which a low end of 0.05 μA/cm2 has been cited instead [Pedeferri 1996].  Those 

low end values would correspond to polarization levels in the order of only 34 to 

65 mV for 0.02 and 0.05 μA/cm2 respectively (Figure 33), with consequently 

greater throwing distances than those obtained for the 100 mV cases. It is noted 

however that the 0.2 μA/cm2 high end of the range does not improve prognosis 

relative to the situations addressed earlier, as it corresponds in the present 
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model to a CP value approaching 150 mV (Figure 33).  That case has already 

been addressed above, and yielded generally poor performance projections.  

 

There are indeed benefits from long term application of cathodic currents, 

in particular from an increase in pH near the surface of the rebar and also a 

decrease in chloride content if contamination already exists [Glass 1997, 2007].  

Those effects are to be expected at substantial cathodic current densities. 

However, the extent of benefits at the very low polarization levels that correspond 

to the low end of the current density-based criteria awaits sufficient experimental 

demonstration.  Should future research develop adequate supporting evidence, 

the less conservative criterion requirements may merit further consideration.   

 

 A contrary argument, for a more conservative corrosion prevention 

criterion, may be made based on the analysis by Presuel-Moreno [2005A] 

summarized in Figure 42. As indicated there, polarization to as much as 400 mV 

below the normal open circuit potential (which is some -0.1 V vs SCE, or ~-0.18 

V CSE) of passive steel in atmospherically exposed concrete  may be required 

for an order-of- magnitude increase in the chloride corrosion threshold. If that 

were the case, cathodic polarization in the order of 100 mV would only achieve a 

marginal threshold increase.  In the light of such conservative scenario, the 

model projections would question the ability of point anodes of the size 

investigated here to provide a useful corrosion prevention effect.  The precise 

dependence of corrosion threshold on potential of the passive steel is a critical 

issue in interpreting the results of the present investigation. However, as 

evidenced from the scatter of available data in Figure 42 there is much 

uncertainty as to the extent of that effect. The issue is much in need of resolution 

by development of reliable data in future investigations. 
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Figure 42 - Summary of information toward establishing a cathodic prevention 

polarization criterion*. 

 

* Each symbol represents an instance of documented corrosion threshold for 

passive steel held in concrete at the potential indicated. Arrows indicate that 

the chloride threshold was equal or higher than the corresponding value. The 

dashed line yields the proposed cathodic prevention potential for a given 

level of protection. Potentials are in the saturated calomel electrode scale; 

potentials vs CSE are 77 mV lower than the value indicated. See Presuel-

Moreno [2005A] for the references cited in the figure. 
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CONCLUSIONS 
 
a. Galvanostatic tests under controlled humidity and test yard slabs with 

reinforced concrete for both types of anodes revealed PFs with 

comparable features. The PFs showed relatively little anodic polarization 

from an open circuit potential at low current levels, followed by an abrupt 

increase in potential as the current approached an apparent terminal 

value. This limiting current for a new anode was in the order of 1.5 mA and 

2.0 mA for C and W anodes respectively. For aged anodes (13 months 

service) it was in the order of ~0.6 mA and 0.4 mA for C and W anodes 

respectively. The curves resemble the behavior expected from a system 

that is approaching a diffusion-controlled limiting current density, or 

alternatively having a sizable ohmic resistance polarization component. 

 

b. For a given test condition and anode service history, the PCFs showed 

significant variability among units of the same type within a given set of 

anodes delivered by the suppliers.  For one of the anode types (W 

anodes), the 1st set tested performed notable worse as a group than the 

2nd set (delivered 3 years later) suggesting an initial manufacturing 

problem. For the 2nd set of anodes the unit-to-unit performance variability 

among each type was much less. 

 

c. Aging of the anodes by delivering current in service was manifested by a 

continually decreasing current output in the test yard slabs.  As implied by 

Slow Cyclic Polarization test results, those changes reflected an evolution 

of the PF generally toward more positive OC potentials and, more 

importantly, to the onset of elevated polarized potentials at increasingly 

lower current levels. The value of OC potential for a new anode (1 month) 
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was in the order of ~-1.15 V and -0.85 V for C and W anodes respectively. 

When the anode was 13 months old the OC potential decayed to ~-1.09 V 

and -0.75 V for C and W anodes respectively. 

 

d. Coupling of the anodes to rebar at the time of casting in concrete 

containing 1.5% Cl- by weight of cement was not sufficient to prevent 

corrosion initiation of the steel rebars in that zone. Testing for about 480 

days in reinforced concrete slabs containing those corroding rebars in 

addition to passive rebars showed that the point anodes induced only 

modest to negligible polarization of the steel assembly. That effect was 

ascribed to the low polarizability of the actively corroding rebars.  

 

e. Upon disconnection of the actively corroding rebars while evaluating the 

first set of anodes, one of the anode types produced cathodic polarization 

levels exceeding 100 mV in the passive rebars that were in close proximity 

to the anode.  The other anode type (suspected of deficiency in the first 

set evaluated) had already exhausted much of its polarizing ability in the 

preceding interval and produced only negligible effects on the surrounding 

passive steel.  

 

f. A continuation test with a second set of anodes of each type, coupled with 

only passive rebar, showed substantial polarization levels (100 mV to 200 

mV) of rebar in the proximity of either type of anode. Current delivery 

decreased with service time but appreciable polarization levels were still 

achieved in nearby rebars after ~500 days of operation 

 

g. Most anode units of both types in the 1st set tested showed on average 

significant current delivery decrease after delivering a cumulative anodic 

charge that was only about 10% to 20% of the maximum theoretical 

amount (QT). Values of QT were ~ 324 k Coul and 133 k Coul for 1st set C 

and W anodes respectively. Anodes in the 2nd set tested showed less 



www.manaraa.com

103 
 

aging effects over the duration of the test, which was conducted until 

reaching up to about 25% of the theoretical limit. Estimates based on the 

extent of derating observed in the test interval suggest that in the absence 

of other degradation effects, anodes of this type may be able to function 

adequately up to about ¼ to ⅓ of the theoretical consumption limit.  

 

h. Quantitative polarization functions of the steel rebar were found to agree 

with the results of previous investigations. A steel PF abstraction was 

used as input for modeling projections of anode performance in a generic 

reinforced concrete system. 

 

i. A numerical abstraction of the PF graphs for the anode representative of 

the anodic behavior at various stages of anode aging was obtained using 

a mathematical function that reasonable fit to the experimental data. This 

function was written with service time as the age parameter.  

 

j. Improved performance of the 2nd over the 1st set of anodes was clearly 

observed. However, anodes from 2nd set were connected to passive rebar 

only, and enhanced performance may have resulted also from the low 

resistivity (nominally ~5000 Ω-cm) medium cast around the 2nd set 

anodes.  

 

k. Modeling of a generic patch configuration with a one-dimensional 

approximation was used to calculate the throwing distance that could be 

achieved by a given number of anodes per unit perimeter of the patch, 

concrete thickness, concrete resistivity, amount of steel and amount of 

polarization needed for cathodic prevention. The model projections 

together with the aging information determined experimentally suggest 

that throwing distance in likely application scenarios may seriously 

degrade within a few years of operation, even if a relatively optimistic 100 

mV corrosion prevention criterion were assumed.  The model was 
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validated by comparison against the experimental results from the test 

yard slabs.  

 

l. Less conservative, current density-based corrosion prevention criteria 

have been proposed in the literature that would result in improved 

throwing distance projections under some conditions yet to be 

substantiated. However, other investigations suggest that a significantly 

more conservative corrosion prevention criterion than 100 mV polarization 

may be necessary instead. The latter case would question the ability of 

the point anodes to provide a useful corrosion prevention effect for 

reinforcement around the patch. 
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Appendix A: Computation of Polarization Distribution in a Reinforcing Steel 

Member – Model Validation 

 

A.1 Objective and Approach 

 

While based on sound principles, the 1-D model that was used in Chapter 

5 to estimate the extent of cathodic polarization provided to a generic repair 

configuration involved numerous simplifications and assumptions in the interest 

of practical implementation. Validation of the model projections by comparison 

against a well characterized actual system is therefore highly desirable. The test 

yard slabs have a simple reinforcement and concrete configuration suitable for 

such comparison. In this section, the model was applied to compute the extent of 

polarization delivered to the passive rebars in the yard slabs by the sacrificial 

point anodes at various ages. 

 

The model was adapted with minimum changes to simulate the actual 

physical system. The same computational array used for the model calculations 

was implemented but the number of consecutive nodes was changed to 12 to 

exactly match the existing number of rebar segments in the slabs. Under those 

conditions Eq. 8 in finite difference form is the same as that of a circuit network 

with resistance between concrete nodes corresponding to the actual concrete 

resistance between planes centered on consecutive rebars, and potentials equal 

to those of the concrete on the nodes, as illustrated in Figure 43. 
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Appendix A:  (Continued) 

 

 

 

 

 

 

 

Figure 43 - Circuit network equivalent for model validation. Configuration 

modeled corresponds to the testing of the 2nd set of anodes. I6 to I9 = 0. 

 

The model in Chapter 5 was implemented with one anode placed at the 

grid node corresponding to the repair patch end.  For the validation calculations it 

was chosen to represent the case where the 2nd set of anodes was tested, so 

the anode position was located between rebars No. 3 and 4. This condition was 

modeled by associating nodes 3 and 4 each with one fictitious half-anode. For 

such half-anode, the PF has for a given potential one half of the current of the 

actual anode, and the current constriction resistance is twice as large as that of 

the actual anode. Those provisions offer internal consistency since the parallel 

combination of both halves would then behave electrically equivalent to one full 

anode. Also as during the evaluation of the 2nd set of anodes, where rebars 6 

though 9 were disconnected, the corresponding nodes were assigned zero sink 

current.  The boundary conditions at each end were specified similar to that of 

the remote end in the model in Chapter 5 (Eq.7). 

 

A.2 Procedure 

 

The validation calculations were made to correspond to conditions during 

the testing of the 2nd set of both types of anodes at ages 4 and 13 months. The 

following model inputs were used: 
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Appendix A:  (Continued) 

 

a. PF for both ages calculated using the global fit equations 15 to 18 with 

parameters listed in Table 3. 

b. Concrete resistivity for the chloride-free and chloride-rich zones. The 

values used, 25 kΩ-cm and 12.5 kΩ-cm respectively corresponded to the 

average of the temperature-corrected data for the period between days 

1045 and 1550 in Figure 34, representative of the conditions prevalent at 

the two selected 2nd set anode ages. 

c. Steel polarization function as abstracted per Eq. (13) from the data in 

Figure 33, with parameters listed in Table 3.  

d. Slab dimensions per Figure 7.  

e. Steel placement density = 0.0906 computed from rebar nominal size and 

slab dimensions.  

 

 The model inputs were used to calculate the secondary expressions for 

rebar and anode current constriction resistances, and numeric solution was 

conducted in the same manner as indicated earlier.  

 

 The model outputs for the purposes of validation comparisons were, for 

each rebar No. i that was connected to the anode at anode age t: 

 

a. The values of the potential Es (i,t)  

b. The values of the net cathodic rebar current I(i,t)  

 

The difference P(i,t) = Esu – Es (i, t) for each rebar5 was calculated as a 

secondary output from the above and reported as the projected steel polarization 

in each case.  

 

                                                 
5 It is recalled the Esu is the value of the potential of unpolarized (open circuit) passive rebar. 
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Appendix A:  (Continued) 

 

A.3 Results and Discussion 

 

 The model output values of P(i,t) and I(i,t) were compared with the 4h 

steel depolarization values and individual temperature corrected rebar currents, 

averaged for each group of 3 slabs, measured at the respective anode ages. 

Tables 6 and 7 presents all the model results and the corresponding 

experimental data used for C and W anodes respectively. It is emphasized that 

other than adapting for system configuration and concrete resistivity the 

parameter inputs used in the model calculations were the same as those used for 

the overall calculations in Chapter 5,  and that no parameter adjustment took 

place to normalize or condition the fit between the computed and measured 

amounts.  

 

The results are shown in graphic form in Figures 44 and 45 for the C 

anodes at ages 4 and 13 mo respectively, and similarly in Figures 46 and 47 for 

the W anodes. Comparisons are made only for the rebars that were connected to 

the anodes at the time, since the others (No. 6-9) were in the open circuit 

condition and not forming part of the overall galvanic macrocell.  Their open 

circuit potential values corresponded to a mixed potential determined in the 

anodic component by active steel dissolution in chloride contaminated concrete, 

a condition not addressed by the model so no comparisons for potential were 

made for those rebars. Moreover, since those rebars were placed crosswise to 

the main electrolytic current flow and of small dimensions compared to the 

concrete bulk, they represented only a minor disruption of the current distribution 

pattern so any residual effect on the rest of the system was ignored.   
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Appendix A:  (Continued) 

 

In all cases the pattern shapes of model steel polarization and galvanic 

current distribution matched well those observed experimentally. Those patterns 

included maxima at or between rebars No. 3 and 4 which are on either side of 

the anode, and decay away from the anode in comparable proportions including 

substantially smaller amounts for the rebars at the other end of the slab.  The 

model also replicated for both types of anodes the pattern of decreasing extent of 

polarization as anode age increased from 4 to 13 months.  
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1 2 3 4 5 10 11 12
C Exp 1 0.117 0.135 0.175 0.157 0.166 0.063 0.054 0.054
C Exp 3 0.162 0.189 0.229 0.195 0.180 0.091 0.101 0.081
C Exp 5 0.136 0.130 0.193 0.174 0.166 0.098 0.086 0.082
C Exp Average 0.138 0.151 0.199 0.175 0.170 0.084 0.080 0.072

C Model 0.155 0.177 0.219 0.219 0.178 0.108 0.092 0.085

1 2 3 4 5 10 11 12
C Exp 1 55 99 272 248 91 75 28 13
C Exp 3 48 86 208 258 133 26 15 14
C Exp 5 38 70 152 243 95 27 10 13
C Exp Average 47 85 211 250 106 43 18 14

C Model 94 138 286 286 139 39 28 24

Current (uA)
Rebar #

 C anodes 4 mo
Depolarization(V)

Rebar #

1 2 3 4 5 10 11 12
C Exp 1 0.097 0.113 0.151 0.135 0.129 0.060 0.059 0.057
C Exp 3 0.156 0.176 0.187 0.180 0.166 0.087 0.086 0.087
C Exp 5 0.146 0.168 0.210 0.176 0.163 0.109 0.095 0.093
C Exp Average 0.133 0.152 0.183 0.164 0.153 0.085 0.080 0.079

C Model 0.123 0.138 0.168 0.167 0.136 0.085 0.074 0.068

1 2 3 4 5 10 11 12
C Exp 1 48 84 202 164 95 71 20 10
C Exp 3 34 59 116 136 89 21 12 10
C Exp 5 27 55 97 143 76 22 6 10
C Exp Average 36 66 138 148 87 38 13 10

C Model 52 68 117 116 66 24 18 16

Rebar #

 C anodes 13 mo
Depolarization(V)

Rebar #

Current (uA)

Appendix A:  (Continued) 

 

Table 6 - Model output and experimental data for C anodes at ages 4 and 13 

months. 
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1 2 3 4 5 10 11 12
W Exp 1 0.148 0.166 0.213 0.165 0.158 0.079 0.078 0.070
W Exp 3 0.164 0.175 0.235 0.166 0.168 0.092 0.078 0.066
W Exp 5 0.148 0.162 0.202 0.159 0.180 0.075 0.090 0.085
W Exp Average 0.153 0.168 0.217 0.163 0.169 0.082 0.082 0.073

W Model 0.142 0.161 0.198 0.198 0.160 0.098 0.085 0.078

1 2 3 4 5 10 11 12
W Exp 1 55 99 272 248 91 75 28 13
W Exp 3 48 86 208 258 133 26 15 14
W Exp 5 38 70 152 243 95 27 10 13
W Exp Average 47 85 211 250 106 43 18 14

W Model 74 103 198 198 103 31.56 23.59 20.35

Current (uA)
Rebar #

Depolarization(V)
Rebar #

 W anodes 4 mo

1 2 3 4 5 10 11 12
W Exp 1 0.146 0.166 0.188 0.163 0.145 0.075 0.082 0.087
W Exp 3 0.119 0.130 0.151 0.112 0.110 0.049 0.039 0.035
W Exp 5 0.140 0.142 0.159 0.154 0.140 0.090 0.095 0.088
W Exp Average 0.135 0.146 0.166 0.143 0.131 0.071 0.072 0.070

W Model 0.105 0.116 0.139 0.138 0.114 0.072 0.063 0.059

1 2 3 4 5 10 11 12
W Exp 1 30 42 85 88 46 28 6 7
W Exp 3 33 43 55 72 53 41 -20 12
W Exp 5 30 36 77 64 67 9 4 3
W Exp Average 31 40 72 74 55 26 -4 7

W Model 36 45 69 68 43 18 14 13

Rebar #

 W anodes 13 mo
Depolarization(V)

Rebar #

Current (uA)

Appendix A:  (Continued) 

 

Table 7 - Model output and experimental data for W anodes at ages 4 and 13 

months. 
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Figure 44 - Experimental and modeled values of polarization and cathodic 

current for rebars connected to the main Type C anode 2nd Set (4 months anode 

age). Rebar positions measured from the slab edge next to Rebar No.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 - Experimental and modeled values of polarization and cathodic 

current for rebars connected to the main Type C anode 2nd Set (13 months 

anode age). Rebar positions measured from the slab edge next to Rebar No.1. 
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Figure 46 - Experimental and modeled values of polarization and cathodic 

current for rebars connected to the main Type W anode 2nd Set (4 months 

anode age). Rebar positions measured from the slab edge next to Rebar No.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 47- Experimental and modeled values of polarization and cathodic current 

for rebars connected to the main Type W anode 2nd Set (13 months anode age). 

Rebar positions measured from the slab edge next to Rebar No.1. 
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Average St Dev Average St Dev
C / 4 mo 0.021 0.011 1.460 0.349
C / 13 mo -0.009 0.007 1.060 0.370
W / 4 mo 0.002 0.017 1.13 0.32
W / 13 mo -0.02 0.012 1.41 0.83

Pmodel - Pexp I cath model / I cath expAnode / Age

Appendix A:  (Continued) 

 

Quantitative agreement between model and experimental observations is 

readily assessed in the graphic comparison in Figures 48 and 49 for C and W 

anodes respectively, where the model and experimental values are plotted as 

function of each other and contrasted against an ideal 1:1 agreement line. In 

keeping with the Tafel-like behavior of the cathodic reaction over much of the 

range of interest, comparisons between model and experimental polarization 

results were considered in terms of potentials differences, while comparisons of 

currents were made in terms of ratios given the near exponential current-

potential relationship over the same range.  In addition, the extent of agreement 

was evaluated numerically as shown in Table 8.  There for each anode type and 

age condition examined the differences of model minus experimental polarization 

values of the 8 rebars (average of 3 slabs) were computed, and an average and 

standard deviation obtained. Similar calculations were performed for the ratios of 

model to experimental cathodic current. The results showed that model and 

experimental polarizations were typically on average within < 20 mV of each 

other, with standard deviation <20 mV. Likewise, model cathodic currents were 

typically within a multiplying/dividing factor of 1.5 of those obtained 

experimentally.  

 

Table 8 - Deviations between model output and experimental data. 
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The quantitative comparison showed agreement between model and 

experimental behavior that was generally close, comparable to the variability 

observed between the experimental results of replicate slabs in Tables 6 and 7. 

Together with the agreement with spatial polarization patterns and time evolution 

behavior documented above, these findings support the validity and applicability 

of the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48 - One-on-one comparison of model output and experimental values for 

C anodes. 4 mo (black circles) and 13 mo (open circles). 

 

 

 

 

 

 

 

 



www.manaraa.com

124 
 

y = 0.7713x0.8599

R2 = 0.9339

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

Dep Model / V 
D

ep
 E

xp
er

im
en

ta
l /

 V

4 mo

13 mo

y = 2.2101x0 8297

R2 = 0.9403

1

10

100

1000

1 10 100 1000

i cath  exp. / uA

i c
at

h 
 m

od
el

 /u
A

4 mo

13 mo

Appendix A:  (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49 - One-on-one comparison of model output and experimental values for 

W anodes. 4 mo (black circles) and 13 mo (open circles). 

 

It is noted that the deviation between model and experimental results had 

often a moderate but clearly systematic component that varied in extent and 

direction with the anode age considered. This is not surprising considering that 

the anode polarization functions used, and their time dependence parameters 

(Eqs. 15 to 18) resulted from a global fit to the behavior of the group of three 

anodes evaluated in each set over the total test period. Moreover, the cathodic 

polarization function was also a global fit which had time invariant parameters 

and fixed concrete resistivity value for each slab zone was used in the model for 

all the calculations. Such global fits and flat approximations are expected to 

reasonably reproduce overall trends, but are less likely to precisely capture the 

instantaneous behavior of the system, therefore giving rise to modest systematic 

offsets such as those observed here.  
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Appendix A:  (Continued) 

 

In the foregoing the potential model output was considered only as a 

deviation from the unpolarized condition and compared to experimental results 

from the 4-hour depolarization measurements which may underestimate to some 

extent the values that could be obtained after longer disconnection times. 

Moreover, since the cathodic rebar assembly remained interconnected after the 

anode was disconnected, some residual macrocell currents between individual 

rebars may have been still present after only 4 hours. Consequently, 

comparisons by the same methods used above were made using instead the 

individual instant-off rebar potentials determined experimentally and those 

predicted by the model. The extent of agreement between model and 

experimental values was comparable to that obtained when comparing 

polarization values, suggesting that the effects of those residual conditions were 

highly consequential in this case.  

 

A.4 Conclusion 

 

Comparison between model calculations and experimental observations 

generally supported the validity of the modeling approach for the conditions 

examined.  
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